Liang Zhantu, Fang Xuhong, Liang Zhanhao, Xiong Jian, Deng Fang, Nyamasvisva Tadiwa Elisha
Department of Artificial Intelligence and Data Science, Guangzhou Xinhua University, Dongguan 523133, Guangdong, China.
School of Computer Science and Technology, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
iScience. 2024 Sep 26;27(11):111037. doi: 10.1016/j.isci.2024.111037. eCollection 2024 Nov 15.
Urban flooding significantly impacts city planning and resident safety. Traditional flood risk models, divided into physical and data-driven types, face challenges like data requirements and limited scalability. To overcome these, this study developed a model combining graph convolutional network (GCN) and spiking neural network (SNN), enabling the extraction of both spatial and temporal features from diverse data sources. We built a comprehensive flood risk dataset by integrating social media reports with weather and geographical data from six Chinese cities. The proposed Graph SNN model demonstrated superior performance compared to GCN and LSTM models, achieving high accuracy (85.3%), precision (0.811), recall (0.832), and F1 score (0.821). It also exhibited higher energy efficiency, making it scalable for real-time flood prediction in various urban environments. This research advances flood risk assessment by efficiently processing heterogeneous data while reducing energy consumption, offering a sustainable solution for urban flood management.
城市内涝对城市规划和居民安全产生重大影响。传统的洪水风险模型分为物理模型和数据驱动模型,面临数据需求和可扩展性有限等挑战。为克服这些问题,本研究开发了一种结合图卷积网络(GCN)和脉冲神经网络(SNN)的模型,能够从不同数据源中提取空间和时间特征。我们通过整合来自中国六个城市的社交媒体报告以及天气和地理数据,构建了一个全面的洪水风险数据集。所提出的图SNN模型与GCN和LSTM模型相比表现出卓越性能,实现了高精度(85.3%)、精确率(0.811)、召回率(0.832)和F1分数(0.821)。它还展现出更高的能源效率,使其能够扩展用于各种城市环境中的实时洪水预测。本研究通过高效处理异构数据同时降低能源消耗,推进了洪水风险评估,为城市洪水管理提供了可持续的解决方案。