Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
Department of Biology and Biotechnology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
Mol Neurobiol. 2018 Oct;55(10):7635-7651. doi: 10.1007/s12035-018-0884-4. Epub 2018 Feb 12.
Mutations in fused in sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS). FUS is a multifunctional protein involved in the biogenesis and activity of several types of RNAs, and its role in the pathogenesis of ALS may involve both direct effects of disease-associated mutations through gain- and loss-of-function mechanisms and indirect effects due to the cross talk between different classes of FUS-dependent RNAs. To explore how FUS mutations impinge on motor neuron-specific RNA-based circuitries, we performed transcriptome profiling of small and long RNAs of motor neurons (MNs) derived from mouse embryonic stem cells carrying a FUS-P517L knock-in mutation, which is equivalent to human FUS-P525L, associated with a severe and juvenile-onset form of ALS. Combining ontological, predictive and molecular analyses, we found an inverse correlation between several classes of deregulated miRNAs and their corresponding mRNA targets in both homozygous and heterozygous P517L MNs. We validated a circuitry in which the upregulation of miR-409-3p and miR-495-3p, belonging to a brain-specific miRNA subcluster implicated in several neurodevelopmental disorders, produced the downregulation of Gria2, a subunit of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor with a significant role in excitatory neurotransmission. Moreover, we found that FUS was involved in mediating such miRNA repression. Gria2 alteration has been proposed to be implicated in MN degeneration, through disturbance of Ca homeostasis, which triggers a cascade of damaging "excitotoxic" events. The molecular cross talk identified highlights a role for FUS in excitotoxicity and in miRNA-dependent regulation of Gria2. This circuitry also proved to be deregulated in heterozygosity, which matches the human condition perfectly.
融合基因在肉瘤(FUS)中发生突变可导致肌萎缩侧索硬化症(ALS)。FUS 是一种多功能蛋白,参与多种类型 RNA 的生物发生和活性,其在 ALS 发病机制中的作用可能涉及疾病相关突变通过获得和功能丧失机制的直接影响以及由于不同类别的 FUS 依赖性 RNA 之间的串扰而产生的间接影响。为了探索 FUS 突变如何影响运动神经元特有的基于 RNA 的电路,我们对携带 FUS-P517L 错义突变的小鼠胚胎干细胞衍生的运动神经元(MN)的小 RNA 和长 RNA 进行了转录组谱分析,该突变相当于人类 FUS-P525L,与严重的青少年发病形式的 ALS 相关。通过本体论、预测和分子分析相结合,我们发现同型和杂合 P517L MN 中几种失调 miRNA 与其相应的 mRNA 靶标之间存在反比关系。我们验证了一种电路,其中脑特异性 miRNA 亚簇中的 miR-409-3p 和 miR-495-3p 的上调导致谷氨酸 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体的亚基 Gria2 下调,该受体在兴奋性神经传递中具有重要作用,该亚簇与几种神经发育障碍有关。此外,我们发现 FUS 参与介导这种 miRNA 抑制。Gria2 的改变被认为与 MN 退化有关,通过破坏 Ca 稳态,触发一连串破坏性“兴奋毒性”事件。鉴定出的分子串扰突出了 FUS 在兴奋毒性和 miRNA 依赖性 Gria2 调节中的作用。这种电路在杂合性中也被证明是失调的,这与人类的情况完全吻合。