Park Gi Dae, Kang Yun Chan
Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea.
Small. 2018 Mar;14(13):e1703957. doi: 10.1002/smll.201703957. Epub 2018 Feb 12.
Micrometer-sized spherical aggregates of Sn and Co components containing core-shell, yolk-shell, hollow nanospheres are synthesized by applying nanoscale Kirkendall diffusion in the large-scale spray drying process. The Sn Co -Co SnC -C composite microspheres uniformly dispersed with Sn Co -Co SnC mixed nanocrystals are formed by the first-step reduction of spray-dried precursor powders at 900 °C. The second-step oxidation process transforms the Sn Co -Co SnC -C composite into the porous microsphere composed of Sn-Sn Co @CoSnO -Co O core-shell, Sn-Sn Co @CoSnO -Co O yolk-shell, and CoSnO -Co O hollow nanospheres at 300, 400, and 500 °C, respectively. The discharge capacity of the microspheres with Sn-Sn Co @CoSnO -Co O core-shell, Sn-Sn Co @CoSnO -Co O yolk-shell, and CoSnO -Co O hollow nanospheres for the 200 cycle at a current density of 1 A g is 1265, 987, and 569 mA h g , respectively. The ultrafine primary nanoparticles with a core-shell structure improve the structural stability of the porous-structured microspheres during repeated lithium insertion and desertion processes. The porous Sn-Sn Co @CoSnO -Co O microspheres with core-shell primary nanoparticles show excellent cycling and rate performances as anode materials for lithium-ion batteries.
通过在大规模喷雾干燥过程中应用纳米级柯肯达尔扩散,合成了包含核壳、蛋黄壳、空心纳米球的微米级锡和钴组分的球形聚集体。通过在900℃下对喷雾干燥的前驱体粉末进行第一步还原,形成了均匀分散有SnCo-CoSnC混合纳米晶体的SnCo-CoSnC-C复合微球。第二步氧化过程分别在300、400和500℃下将SnCo-CoSnC-C复合材料转变为由Sn-SnCo@CoSnO-CoO核壳、Sn-SnCo@CoSnO-CoO蛋黄壳和CoSnO-CoO空心纳米球组成的多孔微球。具有Sn-SnCo@CoSnO-CoO核壳、Sn-SnCo@CoSnO-CoO蛋黄壳和CoSnO-CoO空心纳米球的微球在1 A g的电流密度下进行200次循环的放电容量分别为1265、987和569 mA h g。具有核壳结构的超细初级纳米颗粒在反复锂嵌入和脱嵌过程中提高了多孔结构微球的结构稳定性。具有核壳初级纳米颗粒的多孔Sn-SnCo@CoSnO-CoO微球作为锂离子电池的负极材料表现出优异的循环和倍率性能。