Department of Chemistry, King's College London, SE1 1DB London, United Kingdom.
Department of Chemistry, King's College London, SE1 1DB London, United Kingdom
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1799-E1808. doi: 10.1073/pnas.1714668115. Epub 2018 Feb 5.
α-Helical membrane proteins have eluded investigation of their thermodynamic stability in lipid bilayers. Reversible denaturation curves have enabled some headway in determining unfolding free energies. However, these parameters have been limited to detergent micelles or lipid bicelles, which do not possess the same mechanical properties as lipid bilayers that comprise the basis of natural membranes. We establish reversible unfolding of the membrane transporter LeuT in lipid bilayers, enabling the comparison of apparent unfolding free energies in different lipid compositions. LeuT is a bacterial ortholog of neurotransmitter transporters and contains a knot within its 12-transmembrane helical structure. Urea is used as a denaturant for LeuT in proteoliposomes, resulting in the loss of up to 30% helical structure depending upon the lipid bilayer composition. Urea unfolding of LeuT in liposomes is reversible, with refolding in the bilayer recovering the original helical structure and transport activity. A linear dependence of the unfolding free energy on urea concentration enables the free energy to be extrapolated to zero denaturant. Increasing lipid headgroup charge or chain lateral pressure increases the thermodynamic stability of LeuT. The mechanical and charge properties of the bilayer also affect the ability of urea to denature the protein. Thus, we not only gain insight to the long-sought-after thermodynamic stability of an α-helical protein in a lipid bilayer but also provide a basis for studies of the folding of knotted proteins in a membrane environment.
α-螺旋膜蛋白的热力学稳定性一直难以在脂质双层中进行研究。可逆变性曲线已经在确定展开自由能方面取得了一些进展。然而,这些参数仅限于去污剂胶束或脂质双体,它们不具有与构成天然膜基础的脂质双层相同的机械性能。我们在脂质双层中建立了膜转运蛋白 LeuT 的可逆展开,从而能够比较不同脂质组成中的明显展开自由能。LeuT 是神经递质转运蛋白的细菌同源物,其 12 个跨膜螺旋结构内含有一个结。在脂质体中,脲用作 LeuT 的变性剂,根据脂质双层的组成,会导致多达 30%的螺旋结构丧失。LeuT 在脂质体中的脲变性是可逆的,双层中的重折叠会恢复原始的螺旋结构和转运活性。展开自由能与脲浓度的线性关系使自由能能够外推至零变性剂。增加脂质头部基团电荷或链侧向压力会增加 LeuT 的热力学稳定性。双层的机械和电荷特性也会影响脲使蛋白质变性的能力。因此,我们不仅深入了解了α-螺旋蛋白在脂质双层中的长期以来备受关注的热力学稳定性,而且为在膜环境中研究结蛋白的折叠提供了基础。