Suppr超能文献

对一种食木白蚁消化系统的转录组分析揭示了一种有效降解生物质的独特机制。

Transcriptome analysis of the digestive system of a wood-feeding termite () revealed a unique mechanism for effective biomass degradation.

作者信息

Geng Alei, Cheng Yanbing, Wang Yongli, Zhu Daochen, Le Yilin, Wu Jian, Xie Rongrong, Yuan Joshua S, Sun Jianzhong

机构信息

1Biofuels Institute of Jiangsu University, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China.

2Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843 USA.

出版信息

Biotechnol Biofuels. 2018 Feb 3;11:24. doi: 10.1186/s13068-018-1015-1. eCollection 2018.

Abstract

BACKGROUND

Wood-feeding termite, Shiraki, represents a highly efficient system for biomass deconstruction and utilization. However, the detailed mechanisms of lignin modification and carbohydrate degradation in this system are still largely elusive.

RESULTS

In order to reveal the inherent mechanisms for efficient biomass degradation, four different organs (salivary glands, foregut, midgut, and hindgut) within a complete digestive system of a lower termite, , were dissected and collected. Comparative transcriptomics was carried out to analyze these organs using high-throughput RNA sequencing. A total of 71,117 unigenes were successfully assembled, and the comparative transcriptome analyses revealed significant differential distributions of GH (glycosyl hydrolase) genes and auxiliary redox enzyme genes in different digestive organs. Among the GH genes in the salivary glands, the most abundant were GH9, GH22, and GH1 genes. The corresponding enzymes may have secreted into the foregut and midgut to initiate the hydrolysis of biomass and to achieve a lignin-carbohydrate co-deconstruction system. As the most diverse GH families, GH7 and GH5 were primarily identified from the symbiotic protists in the hindgut. These enzymes could play a synergistic role with the endogenous enzymes from the host termite for biomass degradation. Moreover, twelve out of fourteen genes coding auxiliary redox enzymes from the host termite origin were induced by the feeding of lignin-rich diets. This indicated that these genes may be involved in lignin component deconstruction with its redox network during biomass pretreatment.

CONCLUSION

These findings demonstrate that the termite digestive system synergized the hydrolysis and redox reactions in a programmatic process, through different parts of its gut system, to achieve a maximized utilization of carbohydrates. The detailed unique mechanisms identified from the termite digestive system may provide new insights for advanced design of future biorefinery.

摘要

背景

取食木材的白蚁(白木白蚁属)代表了一种高效的生物质解构与利用系统。然而,该系统中木质素修饰和碳水化合物降解的详细机制仍大多不为人知。

结果

为揭示生物质高效降解的内在机制,解剖并收集了一种低等白蚁完整消化系统内的四个不同器官(唾液腺、前肠、中肠和后肠)。利用高通量RNA测序对这些器官进行了比较转录组学分析。共成功组装了71,117个单基因簇,比较转录组分析揭示了糖苷水解酶(GH)基因和辅助氧化还原酶基因在不同消化器官中的显著差异分布。唾液腺中的GH基因中,最丰富的是GH9、GH22和GH1基因。相应的酶可能已分泌到前肠和中肠,以启动生物质的水解并实现木质素 - 碳水化合物共解构系统。作为最多样化的GH家族,GH7和GH5主要是从后肠中的共生原生生物中鉴定出来的。这些酶可与宿主白蚁的内源酶协同作用以降解生物质。此外,来自宿主白蚁的14个编码辅助氧化还原酶的基因中有12个在喂食富含木质素的饲料后被诱导。这表明这些基因可能在生物质预处理过程中通过其氧化还原网络参与木质素成分的解构。

结论

这些发现表明,白蚁消化系统通过其肠道系统的不同部分,在一个程序化的过程中协同水解和氧化还原反应,以实现碳水化合物的最大化利用。从白蚁消化系统中鉴定出的详细独特机制可能为未来生物炼制的先进设计提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e45f/5797411/38cda51b4dd8/13068_2018_1015_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验