Suppr超能文献

人类如何传递语言:横向传播匹配了 Twitter 上同龄人间的单词频率。

How humans transmit language: horizontal transmission matches word frequencies among peers on Twitter.

机构信息

School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK

School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK.

出版信息

J R Soc Interface. 2018 Feb;15(139). doi: 10.1098/rsif.2017.0738.

Abstract

Language transmission, the passing on of language features such as words between people, is the process of inheritance that underlies linguistic evolution. To understand how language transmission works, we need a mechanistic understanding based on empirical evidence of lasting change of language usage. Here, we analysed 200 million online conversations to investigate transmission between individuals. We find that the frequency of word usage is inherited over conversations, rather than only the binary presence or absence of a word in a person's lexicon. We propose a mechanism for transmission whereby for each word someone encounters there is a chance they will use it more often. Using this mechanism, we measure that, for one word in around every hundred a person encounters, they will use that word more frequently. As more commonly used words are encountered more often, this means that it is the frequencies of words which are copied. Beyond this, our measurements indicate that this per-encounter mechanism is neutral and applies without any further distinction as to whether a word encountered in a conversation is commonly used or not. An important consequence of this is that frequencies of many words can be used in concert to observe and measure language transmission, and our results confirm this. These results indicate that our mechanism for transmission can be used to study language patterns and evolution within populations.

摘要

语言传播是指人们之间传递语言特征(如词汇)的过程,是语言进化的基础。为了理解语言传播是如何运作的,我们需要基于语言使用持续变化的经验证据的机械理解。在这里,我们分析了 2 亿次在线对话,以调查个体之间的传播。我们发现,词汇使用的频率在对话中是可以遗传的,而不仅仅是一个人词汇中某个词的存在或缺失。我们提出了一种传播机制,即对于一个人遇到的每个词,他们都有一定的机会更频繁地使用它。使用这个机制,我们可以测量出,在一个人遇到的每一百个词中,大约有一个词会被更频繁地使用。由于更常用的词会被更频繁地遇到,这意味着被复制的是词的频率。除此之外,我们的测量结果表明,这种每遇到一次的机制是中立的,并且不区分在对话中遇到的词是否常用。这一结果的一个重要意义是,许多词的频率可以协同使用来观察和衡量语言传播,我们的结果证实了这一点。这些结果表明,我们的传播机制可以用于研究群体内的语言模式和演变。

相似文献

3
Representing the World in Language and Thought.语言与思维中的世界再现。
Top Cogn Sci. 2024 Jan;16(1):6-24. doi: 10.1111/tops.12719. Epub 2024 Jan 5.
10
A Linguistic Analysis of Suicide-Related Twitter Posts.自杀相关推特帖的语言分析。
Crisis. 2017 Sep;38(5):319-329. doi: 10.1027/0227-5910/a000443. Epub 2017 Feb 23.

引用本文的文献

1
Word reuse and combination support efficient communication of emerging concepts.词的重复使用和组合有助于高效传达新兴概念。
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2406971121. doi: 10.1073/pnas.2406971121. Epub 2024 Nov 6.
3

本文引用的文献

1
Detecting evolutionary forces in language change.检测语言变化中的进化力量。
Nature. 2017 Nov 9;551(7679):223-226. doi: 10.1038/nature24455. Epub 2017 Nov 1.
5
A comparison of worldwide phonemic and genetic variation in human populations.全球人类群体中语音和基因变异的比较。
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1265-72. doi: 10.1073/pnas.1424033112. Epub 2015 Jan 20.
6
Diffusion of lexical change in social media.社交媒体中词汇变化的传播
PLoS One. 2014 Nov 19;9(11):e113114. doi: 10.1371/journal.pone.0113114. eCollection 2014.
8
Iterated learning and the evolution of language.迭代学习与语言的进化
Curr Opin Neurobiol. 2014 Oct;28:108-14. doi: 10.1016/j.conb.2014.07.014. Epub 2014 Jul 23.
9
The mystery of language evolution.语言进化之谜。
Front Psychol. 2014 May 7;5:401. doi: 10.3389/fpsyg.2014.00401. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验