Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
mBio. 2018 Feb 6;9(1):e02287-17. doi: 10.1128/mBio.02287-17.
is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also toxic in high concentrations, requiring that organisms encode regulatory processes to control heme homeostasis. In this work, we describe a posttranscriptional regulatory strategy in heme biosynthesis. The first committed enzyme in the heme biosynthetic pathway, glutamyl-tRNA reductase (GtrR), is regulated by heme abundance and the integral membrane protein HemX. GtrR abundance increases dramatically in response to heme deficiency, suggesting a mechanism by which responds to the need to increase heme synthesis. Additionally, HemX is required to maintain low levels of GtrR in heme-proficient cells, and inactivation of leads to increased heme synthesis. Excess heme synthesis in a Δ mutant activates the staphylococcal heme stress response, suggesting that regulation of heme synthesis is critical to reduce self-imposed heme toxicity. Analysis of diverse organisms indicates that HemX is widely conserved among heme-synthesizing bacteria, suggesting that HemX is a common factor involved in the regulation of GtrR abundance. Together, this work demonstrates that regulates heme synthesis by modulating GtrR abundance in response to heme deficiency and through the activity of the broadly conserved HemX. is a leading cause of skin and soft tissue infections, endocarditis, bacteremia, and osteomyelitis, making it a critical health care concern. Development of new antimicrobials against requires knowledge of the physiology that supports this organism's pathogenesis. One component of staphylococcal physiology that contributes to growth and virulence is heme. Heme is a widely utilized cofactor that enables diverse chemical reactions across many enzyme families. relies on many critical heme-dependent proteins and is sensitive to excess heme toxicity, suggesting must maintain proper intracellular heme homeostasis. Because provides heme for heme-dependent enzymes via synthesis from common precursors, we hypothesized that regulation of heme synthesis is one mechanism to maintain heme homeostasis. In this study, we identify that posttranscriptionally regulates heme synthesis by restraining abundance of the first heme biosynthetic enzyme, GtrR, via heme and the broadly conserved membrane protein HemX.
它负责大量破坏性疾病。它定植宿主并引起感染的能力得到了多种蛋白质的支持,这些蛋白质依赖于辅助因子血红素。血红素是一种广泛存在于各个生物界的卟啉,由常见的细胞前体和铁合成。虽然血红素对细菌生理学至关重要,但在高浓度下也具有毒性,这要求生物体编码调节过程来控制血红素的动态平衡。在这项工作中,我们描述了血红素生物合成中的一种转录后调控策略。血红素生物合成途径中的第一个关键酶,谷氨酰-tRNA 还原酶(GtrR),受血红素丰度和整合膜蛋白 HemX 的调节。血红素缺乏时,GtrR 的丰度会显著增加,这表明了一种应对增加血红素合成需求的机制。此外,HemX 对于在血红素丰富的细胞中维持低水平的 GtrR 是必需的,而 的失活会导致血红素合成增加。Δ 突变体中过量的血红素合成会激活葡萄球菌血红素应激反应,这表明血红素合成的调节对于减轻自身造成的血红素毒性至关重要。对不同生物的分析表明,HemX 在合成血红素的细菌中广泛保守,这表明 HemX 是参与调节 GtrR 丰度的共同因素。总之,这项工作表明,通过响应血红素缺乏调节 GtrR 的丰度,并通过广泛保守的 HemX 的活性,来调节血红素合成。是皮肤和软组织感染、心内膜炎、菌血症和骨髓炎的主要原因,使其成为一个重要的医疗保健关注点。开发针对的新抗菌药物需要了解支持该生物体发病机制的生理学知识。葡萄球菌生理学的一个组成部分,有助于生长和毒力,是血红素。血红素是一种广泛使用的辅助因子,能够在许多酶家族中进行各种化学反应。严重依赖许多关键的血红素依赖性蛋白,并且对过量的血红素毒性敏感,这表明必须维持适当的细胞内血红素动态平衡。由于通过从常见前体合成为血红素依赖性酶提供血红素,我们假设血红素合成的调节是维持血红素动态平衡的一种机制。在这项研究中,我们发现通过血红素和广泛保守的膜蛋白 HemX 来抑制第一血红素生物合成酶 GtrR 的丰度,从而在转录后水平上调节血红素合成。