Suppr超能文献

额叶和顶叶皮质中与开关无关的任务表征

Switch-Independent Task Representations in Frontal and Parietal Cortex.

作者信息

Loose Lasse S, Wisniewski David, Rusconi Marco, Goschke Thomas, Haynes John-Dylan

机构信息

Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany,

Department of Psychology and Collaborative Research Center Volition and Cognitive Control, Technische Universität Dresden, 01069 Dresden, Germany.

出版信息

J Neurosci. 2017 Aug 16;37(33):8033-8042. doi: 10.1523/JNEUROSCI.3656-16.2017. Epub 2017 Jul 20.

Abstract

Alternating between two tasks is effortful and impairs performance. Previous fMRI studies have found increased activity in frontoparietal cortex when task switching is required. One possibility is that the additional control demands for switch trials are met by strengthening task representations in the human brain. Alternatively, on switch trials, the residual representation of the previous task might impede the buildup of a neural task representation. This would predict weaker task representations on switch trials, thus also explaining the performance costs. To test this, male and female participants were cued to perform one of two similar tasks, with the task being repeated or switched between successive trials. Multivoxel pattern analysis was used to test which regions encode the tasks and whether this encoding differs between switch and repeat trials. As expected, we found information about task representations in frontal and parietal cortex, but there was no difference in the decoding accuracy of task-related information between switch and repeat trials. Using cross-classification, we found that the frontoparietal cortex encodes tasks using a generalizable spatial pattern in switch and repeat trials. Therefore, task representations in frontal and parietal cortex are largely switch independent. We found no evidence that neural information about task representations in these regions can explain behavioral costs usually associated with task switching. Alternating between two tasks is effortful and slows down performance. One possible explanation is that the representations in the human brain need time to build up and are thus weaker on switch trials, explaining performance costs. Alternatively, task representations might even be enhanced to overcome the previous task. Here, we used a combination of fMRI and a brain classifier to test whether the additional control demands under switching conditions lead to an increased or decreased strength of task representations in frontoparietal brain regions. We found that task representations are not modulated significantly by switching processes and generalize across switching conditions. Therefore, task representations in the human brain cannot account for the performance costs associated with alternating between tasks.

摘要

在两项任务之间交替是费力的,并且会损害表现。先前的功能磁共振成像(fMRI)研究发现,当需要进行任务切换时,额顶叶皮层的活动会增加。一种可能性是,通过加强人类大脑中的任务表征来满足切换试验的额外控制需求。或者,在切换试验中,先前任务的残余表征可能会阻碍神经任务表征的建立。这将预测在切换试验中任务表征较弱,从而也解释了表现成本。为了对此进行测试,男性和女性参与者被提示执行两项相似任务中的一项,任务在连续试验中重复或切换。多体素模式分析用于测试哪些区域编码任务,以及这种编码在切换试验和重复试验之间是否不同。正如预期的那样,我们在额叶和顶叶皮层中发现了有关任务表征的信息,但在切换试验和重复试验之间,与任务相关信息的解码准确性没有差异。使用交叉分类,我们发现额顶叶皮层在切换试验和重复试验中使用可推广的空间模式对任务进行编码。因此,额叶和顶叶皮层中的任务表征在很大程度上与切换无关。我们没有发现证据表明这些区域中关于任务表征的神经信息可以解释通常与任务切换相关的行为成本。在两项任务之间交替是费力的,并且会减慢表现。一种可能的解释是,人类大脑中的表征需要时间来建立,因此在切换试验中较弱,这解释了表现成本。或者,任务表征甚至可能会增强以克服先前的任务。在这里,我们结合功能磁共振成像和脑部分类器来测试切换条件下的额外控制需求是否会导致额顶叶脑区任务表征的强度增加或降低。我们发现任务表征不会被切换过程显著调节,并且在不同的切换条件下具有普遍性。因此,人类大脑中的任务表征无法解释与任务之间交替相关的表现成本。

相似文献

1
Switch-Independent Task Representations in Frontal and Parietal Cortex.
J Neurosci. 2017 Aug 16;37(33):8033-8042. doi: 10.1523/JNEUROSCI.3656-16.2017. Epub 2017 Jul 20.
2
Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
J Neurosci. 2017 Nov 8;37(45):11037-11050. doi: 10.1523/JNEUROSCI.0935-17.2017. Epub 2017 Oct 2.
3
Observing Action Sequences Elicits Sequence-Specific Neural Representations in Frontoparietal Brain Regions.
J Neurosci. 2018 Nov 21;38(47):10114-10128. doi: 10.1523/JNEUROSCI.1597-18.2018. Epub 2018 Oct 3.
4
Choosing the rules: distinct and overlapping frontoparietal representations of task rules for perceptual decisions.
J Neurosci. 2013 Jul 17;33(29):11852-62. doi: 10.1523/JNEUROSCI.5193-12.2013.
5
Electrophysiological correlates of residual switch costs.
Cortex. 2010 Oct;46(9):1138-48. doi: 10.1016/j.cortex.2009.07.014. Epub 2009 Aug 5.
6
Hierarchically Organized Medial Frontal Cortex-Basal Ganglia Loops Selectively Control Task- and Response-Selection.
J Neurosci. 2017 Aug 16;37(33):7893-7905. doi: 10.1523/JNEUROSCI.3289-16.2017. Epub 2017 Jul 17.
7
Cue-switch effects do not rely on the same neural systems as task-switch effects.
Cogn Affect Behav Neurosci. 2011 Dec;11(4):600-7. doi: 10.3758/s13415-011-0055-9.
8
9
Anodal tDCS over the right parietal but not frontal cortex enhances the ability to overcome task set inhibition during task switching.
PLoS One. 2020 Feb 18;15(2):e0228541. doi: 10.1371/journal.pone.0228541. eCollection 2020.
10
Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
J Neurosci. 2018 Mar 7;38(10):2495-2504. doi: 10.1523/JNEUROSCI.2724-17.2018. Epub 2018 Feb 2.

引用本文的文献

1
Executive functions modulate conditioned fear extinction and reinstatement: The differential roles of shifting, updating, and inhibition.
Int J Clin Health Psychol. 2025 Apr-Jun;25(2):100581. doi: 10.1016/j.ijchp.2025.100581. Epub 2025 May 9.
2
Task-Switch Related Reductions in Neural Distinctiveness in Children and Adults: Commonalities and Differences.
J Neurosci. 2025 Jun 25;45(26):e2358232025. doi: 10.1523/JNEUROSCI.2358-23.2025.
3
A neural implementation of cognitive reserve: Insights from a longitudinal fMRI study of set-switching in aging.
Neurobiol Aging. 2025 Jan;145:76-83. doi: 10.1016/j.neurobiolaging.2024.10.008. Epub 2024 Oct 31.
4
Humans actively reconfigure neural task states.
bioRxiv. 2025 Feb 28:2024.09.29.615736. doi: 10.1101/2024.09.29.615736.
5
Interaction Between Memory Load and Experimental Design on Brain Connectivity and Network Topology.
Neurosci Bull. 2023 Apr;39(4):631-644. doi: 10.1007/s12264-022-00982-y. Epub 2022 Dec 24.
6
Task switching involves working memory: Evidence from neural representation.
Front Psychol. 2022 Nov 15;13:1003298. doi: 10.3389/fpsyg.2022.1003298. eCollection 2022.
8
Abstract task representations for inference and control.
Trends Cogn Sci. 2022 Jun;26(6):484-498. doi: 10.1016/j.tics.2022.03.009. Epub 2022 Apr 22.
9
Neural representation of abstract task structure during generalization.
Elife. 2021 Mar 17;10:e63226. doi: 10.7554/eLife.63226.
10
Cross-Hemispheric Complementary Prefrontal Mechanisms during Task Switching under Perceptual Uncertainty.
J Neurosci. 2021 Mar 10;41(10):2197-2213. doi: 10.1523/JNEUROSCI.2096-20.2021. Epub 2021 Jan 19.

本文引用的文献

1
Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5. doi: 10.1073/pnas.1602413113. Epub 2016 Jun 28.
2
Similar coding of freely chosen and externally cued intentions in a fronto-parietal network.
Neuroimage. 2016 Jul 1;134:450-458. doi: 10.1016/j.neuroimage.2016.04.044. Epub 2016 Apr 21.
3
Potentiation of the startle reflex is in line with contingency reversal instructions rather than the conditioning history.
Biol Psychol. 2016 Jan;113:91-9. doi: 10.1016/j.biopsycho.2015.11.014. Epub 2015 Nov 30.
4
The Role of the Parietal Cortex in the Representation of Task-Reward Associations.
J Neurosci. 2015 Sep 9;35(36):12355-65. doi: 10.1523/JNEUROSCI.4882-14.2015.
5
A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and Perspectives.
Neuron. 2015 Jul 15;87(2):257-70. doi: 10.1016/j.neuron.2015.05.025.
6
Flexible Coding of Task Rules in Frontoparietal Cortex: An Adaptive System for Flexible Cognitive Control.
J Cogn Neurosci. 2015 Oct;27(10):1895-911. doi: 10.1162/jocn_a_00827. Epub 2015 May 26.
7
Stable Task Representations under Attentional Load Revealed with Multivariate Pattern Analysis of Human Brain Activity.
J Cogn Neurosci. 2015 Sep;27(9):1789-800. doi: 10.1162/jocn_a_00819. Epub 2015 May 5.
8
NeuroVault.org: A repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain.
Neuroimage. 2016 Jan 1;124(Pt B):1242-1244. doi: 10.1016/j.neuroimage.2015.04.016. Epub 2015 Apr 11.
9
Multivariate cross-classification: applying machine learning techniques to characterize abstraction in neural representations.
Front Hum Neurosci. 2015 Mar 25;9:151. doi: 10.3389/fnhum.2015.00151. eCollection 2015.
10
The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data.
Front Neuroinform. 2015 Jan 6;8:88. doi: 10.3389/fninf.2014.00088. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验