Suppr超能文献

低复杂性蛋白质片段的原子结构揭示了组装网络的扭结β折叠。

Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks.

作者信息

Hughes Michael P, Sawaya Michael R, Boyer David R, Goldschmidt Lukasz, Rodriguez Jose A, Cascio Duilio, Chong Lisa, Gonen Tamir, Eisenberg David S

机构信息

Department of Biological Chemistry and Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Howard Hughes Medical Institute (HHMI), UCLA-Department of Energy (DOE) Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA.

Department of Chemistry and Biochemistry, UCLA, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA.

出版信息

Science. 2018 Feb 9;359(6376):698-701. doi: 10.1126/science.aan6398.

Abstract

Subcellular membraneless assemblies are a reinvigorated area of study in biology, with spirited scientific discussions on the forces between the low-complexity protein domains within these assemblies. To illuminate these forces, we determined the atomic structures of five segments from protein low-complexity domains associated with membraneless assemblies. Their common structural feature is the stacking of segments into kinked β sheets that pair into protofilaments. Unlike steric zippers of amyloid fibrils, the kinked sheets interact weakly through polar atoms and aromatic side chains. By computationally threading the human proteome on our kinked structures, we identified hundreds of low-complexity segments potentially capable of forming such interactions. These segments are found in proteins as diverse as RNA binders, nuclear pore proteins, and keratins, which are known to form networks and localize to membraneless assemblies.

摘要

亚细胞无膜聚集体是生物学中一个重新焕发生机的研究领域,关于这些聚集体内低复杂性蛋白质结构域之间的作用力存在热烈的科学讨论。为了阐明这些作用力,我们确定了与无膜聚集体相关的蛋白质低复杂性结构域的五个片段的原子结构。它们共同的结构特征是片段堆叠成扭结的β折叠,这些β折叠配对形成原丝。与淀粉样纤维的空间拉链不同,扭结的β折叠通过极性原子和芳香族侧链进行弱相互作用。通过在我们的扭结结构上对人类蛋白质组进行计算穿线,我们鉴定出数百个可能能够形成这种相互作用的低复杂性片段。这些片段存在于多种蛋白质中,如RNA结合蛋白、核孔蛋白和角蛋白,已知它们会形成网络并定位于无膜聚集体。

相似文献

8
Extended β-Strands Contribute to Reversible Amyloid Formation.β-延展链有助于形成可逆淀粉样纤维。
ACS Nano. 2022 Feb 22;16(2):2154-2163. doi: 10.1021/acsnano.1c08043. Epub 2022 Feb 8.

引用本文的文献

1
5
Phase Separation Regulates Metabolism, Mitochondria, and Diseases.相分离调节新陈代谢、线粒体及疾病。
MedComm (2020). 2025 Jul 1;6(7):e70283. doi: 10.1002/mco2.70283. eCollection 2025 Jul.

本文引用的文献

3
Biomolecular condensates: organizers of cellular biochemistry.生物分子凝聚物:细胞生物化学的组织者
Nat Rev Mol Cell Biol. 2017 May;18(5):285-298. doi: 10.1038/nrm.2017.7. Epub 2017 Feb 22.
4
Structural Studies of Amyloid Proteins at the Molecular Level.分子水平的淀粉样蛋白结构研究。
Annu Rev Biochem. 2017 Jun 20;86:69-95. doi: 10.1146/annurev-biochem-061516-045104. Epub 2017 Jan 3.
5
UniProt: the universal protein knowledgebase.通用蛋白质知识库:UniProt
Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169. doi: 10.1093/nar/gkw1099. Epub 2016 Nov 29.
6
A glass menagerie of low complexity sequences.一个由低复杂度序列组成的玻璃动物园。
Curr Opin Struct Biol. 2016 Jun;38:18-25. doi: 10.1016/j.sbi.2016.05.002. Epub 2016 May 31.
7
Phase Separation: Linking Cellular Compartmentalization to Disease.相分离:将细胞区室化与疾病联系起来。
Trends Cell Biol. 2016 Jul;26(7):547-558. doi: 10.1016/j.tcb.2016.03.004. Epub 2016 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验