Fringes Stefan, Holzner Felix, Knoll Armin W
IBM Research - Zurich, Säumerstr. 4, 8803 Rüschlikon, Switzerland.
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland.
Beilstein J Nanotechnol. 2018 Jan 26;9:301-310. doi: 10.3762/bjnano.9.30. eCollection 2018.
The behavior of nanoparticles under nanofluidic confinement depends strongly on their distance to the confining walls; however, a measurement in which the gap distance is varied is challenging. Here, we present a versatile setup for investigating the behavior of nanoparticles as a function of the gap distance, which is controlled to the nanometer. The setup is designed as an open system that operates with a small amount of dispersion of ≈20 μL, permits the use of coated and patterned samples and allows high-numerical-aperture microscopy access. Using the tool, we measure the vertical position (termed height) and the lateral diffusion of 60 nm, charged, Au nanospheres as a function of confinement between a glass surface and a polymer surface. Interferometric scattering detection provides an effective particle illumination time of less than 30 μs, which results in lateral and vertical position detection accuracy ≈10 nm for diffusing particles. We found the height of the particles to be consistently above that of the gap center, corresponding to a higher charge on the polymer substrate. In terms of diffusion, we found a strong monotonic decay of the diffusion constant with decreasing gap distance. This result cannot be explained by hydrodynamic effects, including the asymmetric vertical position of the particles in the gap. Instead we attribute it to an electroviscous effect. For strong confinement of less than 120 nm gap distance, we detect the onset of subdiffusion, which can be correlated to the motion of the particles along high-gap-distance paths.
纳米颗粒在纳米流体限制条件下的行为强烈依赖于它们与限制壁的距离;然而,改变间隙距离的测量具有挑战性。在此,我们展示了一种通用装置,用于研究纳米颗粒行为与间隙距离的函数关系,间隙距离可控制到纳米级。该装置设计为开放系统,以约20 μL的少量分散液运行,允许使用涂覆和图案化的样品,并允许使用高数值孔径显微镜进行观察。使用该工具,我们测量了60 nm带电荷的金纳米球在玻璃表面和聚合物表面之间的限制条件下的垂直位置(称为高度)和横向扩散。干涉散射检测提供的有效粒子照射时间小于30 μs,这使得扩散粒子的横向和垂直位置检测精度约为10 nm。我们发现颗粒的高度始终高于间隙中心的高度,这对应于聚合物基底上更高的电荷。在扩散方面,我们发现随着间隙距离减小,扩散常数呈现强烈的单调衰减。这一结果无法用流体动力学效应来解释,包括颗粒在间隙中垂直位置的不对称性。相反,我们将其归因于电黏滞效应。对于间隙距离小于120 nm的强限制情况,我们检测到亚扩散的开始,这可能与颗粒沿高间隙距离路径的运动相关。