Suppr超能文献

在流体中,几何诱导的纳米物体静电捕获。

Geometry-induced electrostatic trapping of nanometric objects in a fluid.

机构信息

Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.

出版信息

Nature. 2010 Oct 7;467(7316):692-5. doi: 10.1038/nature09404.

Abstract

The ability to trap an object-whether a single atom or a macroscopic entity-affects fields as diverse as quantum optics, soft condensed-matter physics, biophysics and clinical medicine. Many sophisticated methodologies have been developed to counter the randomizing effect of Brownian motion in solution, but stable trapping of nanometre-sized objects remains challenging. Optical tweezers are widely used traps, but require sufficiently polarizable objects and thus are unable to manipulate small macromolecules. Confinement of single molecules has been achieved using electrokinetic feedback guided by tracking of a fluorescent label, but photophysical constraints limit the trap stiffness and lifetime. Here we show that a fluidic slit with appropriately tailored topography has a spatially modulated electrostatic potential that can trap and levitate charged objects in solution for up to several hours. We illustrate this principle with gold particles, polymer beads and lipid vesicles with diameters of tens of nanometres, which are all trapped without external intervention and independently of their mass and dielectric function. The stiffness and stability of our electrostatic trap is easily tuned by adjusting the system geometry and the ionic strength of the solution, and it lends itself to integration with other manipulation mechanisms. We anticipate that these features will allow its use for contact-free confinement of single proteins and macromolecules, and the sorting and fractionation of nanometre-sized objects or their assembly into high-density arrays.

摘要

捕获物体的能力——无论是单个原子还是宏观实体——都会影响到量子光学、软凝聚态物理、生物物理和临床医学等多个领域。已经开发出许多复杂的方法来对抗溶液中布朗运动的随机化效应,但稳定捕获纳米级物体仍然具有挑战性。光镊是广泛使用的陷阱,但需要足够可极化的物体,因此无法操纵小的大分子。通过跟踪荧光标记来实现的电动反馈来限制单个分子的限制,但是光物理限制限制了陷阱的刚度和寿命。在这里,我们表明具有适当修饰形貌的流体狭缝具有空间调制的静电势,可以在溶液中捕获和悬浮带电物体长达数小时。我们用金颗粒、聚合物珠和脂质囊泡证明了这一原理,这些囊泡的直径为数十纳米,它们都在没有外部干预的情况下被捕获,并且不依赖于它们的质量和介电常数。通过调整系统几何形状和溶液的离子强度,可以轻松调整我们的静电陷阱的刚度和稳定性,并且易于与其他操作机制集成。我们预计这些特性将允许其用于无接触限制单个蛋白质和大分子的自由,以及纳米级物体的分类和分离,或其组装成高密度阵列。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验