Suppr超能文献

在生物离子液体中对单个纳米物体进行片上传输、捕获和表征。

On-chip transporting arresting and characterizing individual nano-objects in biological ionic liquids.

作者信息

Höller Christian, Schnoering Gabriel, Eghlidi Hadi, Suomalainen Maarit, Greber Urs F, Poulikakos Dimos

机构信息

Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland.

Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.

出版信息

Sci Adv. 2021 Jul 2;7(27). doi: 10.1126/sciadv.abd8758. Print 2021 Jul.

Abstract

Understanding and controlling the individual behavior of nanoscopic matter in liquids, the environment in which many such entities are functioning, is both inherently challenging and important to many natural and man-made applications. Here, we transport individual nano-objects, from an assembly in a biological ionic solution, through a nanochannel network and confine them in electrokinetic nanovalves, created by the collaborative effect of an applied ac electric field and a rationally engineered nanotopography, locally amplifying this field. The motion of so-confined fluorescent nano-objects is tracked, and its kinetics provides important information, enabling the determination of their particle diffusion coefficient, hydrodynamic radius, and electrical conductivity, which are elucidated for artificial polystyrene nanospheres and subsequently for sub-100-nm conjugated polymer nanoparticles and adenoviruses. The on-chip, individual nano-object resolution method presented here is a powerful approach to aid research and development in broad application areas such as medicine, chemistry, and biology.

摘要

理解并控制液体中纳米物质的个体行为,即许多此类实体发挥作用的环境,对许多自然和人造应用而言,既具有内在挑战性又至关重要。在此,我们将生物离子溶液中的单个纳米物体从一个组件中通过纳米通道网络进行传输,并将它们限制在电动纳米阀中,该纳米阀由外加交流电场和合理设计的纳米形貌的协同效应产生,可局部增强该电场。追踪如此受限的荧光纳米物体的运动,其动力学提供了重要信息,能够确定它们的粒子扩散系数、流体动力学半径和电导率,这些参数已针对人造聚苯乙烯纳米球进行了阐明,随后又针对亚100纳米共轭聚合物纳米颗粒和腺病毒进行了阐明。本文介绍的片上单个纳米物体分辨率方法是一种强大的方法,有助于医学、化学和生物学等广泛应用领域的研究与开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6851/11057703/e52298eca73c/abd8758-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验