Suppr超能文献

通过二氧化硅涂层显著提高WO₃-H₂O悬浮液的分散稳定性和热导率。

Remarkably Improved Dispersion Stability and Thermal Conductivity of WO₃-H₂O Suspension by SiO₂ Coating.

作者信息

Pal Bhupender, Mallick Soumya Suddha, Pal Bonamali

机构信息

School of Chemistry and Biochemistry, Thapar University, Patiala 147004, Punjab, India.

Department of Mechanical Engineering, Thapar University, Patiala 147004, Punjab, India.

出版信息

J Nanosci Nanotechnol. 2018 May 1;18(5):3283-3290. doi: 10.1166/jnn.2018.14624.

Abstract

The long term dispersion stability for an improved thermal conductivity is a challenging issue that needs to be solved for heat transfer applications. Hence, this research investigated that a thin layer of SiO2 coating (2-5 nm) over WO3 nanostructures (SiO2@WO3) of different shapes exhibit superior dispersion (0.01%) stability for longer duration (∼3 days) as evident by steady zeta potential (-30 ↔ -60.70 mV), no significant change in particle-size (139 ↔ 147 nm) distribution, density (1.001 ↔ 0.988 g/cm3) and refractive index (1.335 ↔ 1.332) etc., are indicator for colloidal stability relative to bare WO3 nanoparticles and bulk SiO2 aqueous suspension which quickly settles down within 1-2 hours after 30 min sonication at 23 °C. Thin Si-OH layer over WO3 surface imparts superior hydrophilicity, larger surface area for effective solute-solvent (SiO2@WO3-H2O) interaction for improved colloidal stability showing no sedimentation and color change of SiO2@WO3 dispersion (0.01%) even after 3 days due to repulsive interaction between negatively charged Si-O- particles. Thereby, thermal conductivity is found to be quite stable (0.631 ↔ 0.618 W/m K) up to 3 days, whereas aqueous suspension of bare WO3 and SiO2 particles quickly settle down and thermal conductivity rapidly decreased to a value of 0.584 W/m K for de-ionized water further indicates the significance of SiO2 coating. Depending on the thickness of SiO2 layer and volume fraction of SiO2@WO3, a maximum of 8-10% increment of thermal conductivity was achieved where anisotropic WO3 displayed always more (∼5%) thermal conductivity than typical spherical nanoparticles.

摘要

对于改善热导率而言,实现长期分散稳定性是一个具有挑战性的问题,这是传热应用中需要解决的。因此,本研究调查了不同形状的WO₃纳米结构(SiO₂@WO₃)上的一层薄SiO₂涂层(2 - 5纳米)在较长时间(约3天)内表现出优异的分散稳定性(0.01%),这可通过稳定的zeta电位(-30 ↔ -60.70 mV)、粒径(139 ↔ 147纳米)分布、密度(1.001 ↔ 0.988克/立方厘米)和折射率(1.335 ↔ 1.332)等无显著变化来证明,相对于裸WO₃纳米颗粒和本体SiO₂水悬浮液而言,这些是胶体稳定性的指标,裸WO₃纳米颗粒和本体SiO₂水悬浮液在23℃下超声处理30分钟后,1 - 2小时内就会迅速沉降。WO₃表面的薄Si - OH层赋予其优异的亲水性,更大的表面积有利于溶质 - 溶剂(SiO₂@WO₃ - H₂O)进行有效相互作用,从而改善胶体稳定性,即使3天后SiO₂@WO₃分散液(0.01%)也没有沉降和颜色变化,这是由于带负电荷的Si - O - 颗粒之间的排斥相互作用。由此发现,热导率在长达3天的时间内相当稳定(0.631 ↔ 0.618瓦/米·开尔文),而裸WO₃和SiO₂颗粒的水悬浮液迅速沉降,去离子水的热导率迅速降至0.584瓦/米·开尔文,这进一步表明了SiO₂涂层的重要性。根据SiO₂层的厚度和SiO₂@WO₃的体积分数,热导率最多可提高8 - 10%,其中各向异性的WO₃的热导率总是比典型的球形纳米颗粒高约5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验