Suppr超能文献

一个驱动个体2型糖尿病发病的生理因素的长期机制计算模型。

A long-term mechanistic computational model of physiological factors driving the onset of type 2 diabetes in an individual.

作者信息

Sarkar Joydeep, Dwivedi Gaurav, Chen Qian, Sheu Iris E, Paich Mark, Chelini Colleen M, D'Alessandro Paul M, Burns Samuel P

机构信息

PricewaterhouseCoopers LLP, New York, New York, United States of America.

出版信息

PLoS One. 2018 Feb 14;13(2):e0192472. doi: 10.1371/journal.pone.0192472. eCollection 2018.

Abstract

A computational model of the physiological mechanisms driving an individual's health towards onset of type 2 diabetes (T2D) is described, calibrated and validated using data from the Diabetes Prevention Program (DPP). The objective of this model is to quantify the factors that can be used for prevention of T2D. The model is energy and mass balanced and continuously simulates trajectories of variables including body weight components, fasting plasma glucose, insulin, and glycosylated hemoglobin among others on the time-scale of years. Modeled mechanisms include dynamic representations of intracellular insulin resistance, pancreatic beta-cell insulin production, oxidation of macronutrients, ketogenesis, effects of inflammation and reactive oxygen species, and conversion between stored and activated metabolic species, with body-weight connected to mass and energy balance. The model was calibrated to 331 placebo and 315 lifestyle-intervention DPP subjects, and one year forecasts of all individuals were generated. Predicted population mean errors were less than or of the same magnitude as clinical measurement error; mean forecast errors for weight and HbA1c were ~5%, supporting predictive capabilities of the model. Validation of lifestyle-intervention prediction is demonstrated by synthetically imposing diet and physical activity changes on DPP placebo subjects. Using subject level parameters, comparisons were made between exogenous and endogenous characteristics of subjects who progressed toward T2D (HbA1c > 6.5) over the course of the DPP study to those who did not. The comparison revealed significant differences in diets and pancreatic sensitivity to hyperglycemia but not in propensity to develop insulin resistance. A computational experiment was performed to explore relative contributions of exogenous versus endogenous factors between these groups. Translational uses to applications in public health and personalized healthcare are discussed.

摘要

本文描述了一个计算模型,该模型基于糖尿病预防计划(DPP)的数据进行校准和验证,用于模拟促使个体健康状况发展至2型糖尿病(T2D)发病的生理机制。该模型的目标是量化可用于预防T2D的因素。模型实现了能量和质量平衡,并在数年的时间尺度上持续模拟包括体重组成部分、空腹血糖、胰岛素和糖化血红蛋白等变量的轨迹。建模机制包括细胞内胰岛素抵抗、胰腺β细胞胰岛素分泌、大量营养素氧化、生酮作用、炎症和活性氧的影响以及储存和活化代谢物质之间的转化的动态表示,体重与质量和能量平衡相关联。该模型针对331名接受安慰剂治疗和315名接受生活方式干预的DPP受试者进行了校准,并对所有个体进行了一年的预测。预测的总体平均误差小于临床测量误差或与之相当;体重和糖化血红蛋白的平均预测误差约为5%,支持了该模型的预测能力。通过在DPP安慰剂受试者中综合施加饮食和体育活动变化,验证了生活方式干预预测。利用个体水平参数,比较了在DPP研究过程中进展为T2D(糖化血红蛋白>6.5)的受试者与未进展者的外源性和内源性特征。比较结果显示,饮食和胰腺对高血糖的敏感性存在显著差异,但在发生胰岛素抵抗的倾向方面没有差异。进行了一项计算实验,以探索这些组中外源性因素与内源性因素的相对贡献。还讨论了该模型在公共卫生和个性化医疗中的转化应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58e/5812629/efb309053078/pone.0192472.g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验