Suppr超能文献

Ihh 信号在出生后髁状突软骨中成软骨细胞功能中的作用。

Roles of Ihh signaling in chondroprogenitor function in postnatal condylar cartilage.

机构信息

Division of Plastic and Reconstructive Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Oral and Maxillofacial Surgery, Okayama University Graduate School, 2-5-1, Okayama, Japan.

Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.

出版信息

Matrix Biol. 2018 Apr;67:15-31. doi: 10.1016/j.matbio.2018.02.011. Epub 2018 Feb 12.

Abstract

Condylar articular cartilage in mouse temporomandibular joint develops from progenitor cells near the articulating surface that proliferate, undergo chondrogenesis and mature into hypertrophic chondrocytes. However, it remains unclear how these processes are regulated, particularly postnatally. Here we focused on the apical polymorphic layer rich in progenitors and asked whether the phenotype and fate of the cells require signaling by Indian hedgehog (Ihh) previously studied in developing long bones. In condyles in newborn mice, the apical polymorphic/progenitor cell layer was ~10 cell layer-thick and expressed the articular matrix marker Tenascin-C (Tn-C), and the underlying thick cell layer expressed Tn-C as well as the chondrogenic master regulator Sox9. By 1 month, condylar cartilage had gained its full width, but became thinner along its main longitudinal axis and displayed hypertrophic chondrocytes. By 3 months, articular cartilage consisted of a 2-3 cell layer-thick zone of superficial cells and chondroprogenitors expressing both Tn-C and Sox9 and a bottom zone of chondrocytes displaying vertical matrix septa. EdU cell tracing in juvenile mice revealed that conversion of chondroprogenitors into chondrocytes and hypertrophic chondrocytes required about 48 and 72 h, respectively. Notably, EdU injection in 3 month-old mice labeled both progenitors and maturing chondrocytes by 96 h. Conditional ablation of Ihh in juvenile/early adult mice compromised chondroprogenitor organization and function and led to reduced chondroprogenitor and chondrocyte proliferation. The phenotype of mutant condyles worsened over time as indicated by apoptotic chondrocyte incidence, ectopic chondrocyte hypertrophy, chondrocyte column derangement and subchondral bone deterioration. In micromass cultures of condylar apical cells, hedgehog (Hh) treatment stimulated chondrogenesis and alkaline phosphatase (APase) activity, while treatment with HhAntag inhibited both. Our findings indicate that the chondroprogenitor layer is continuously engaged in condylar growth postnatally and its organization and functioning depend on hedgehog signaling.

摘要

在小鼠颞下颌关节中,髁突关节软骨的祖细胞位于关节表面附近,这些细胞增殖、软骨形成并成熟为肥大软骨细胞。然而,这些过程是如何被调控的,尤其是在出生后,目前还不清楚。在此,我们关注富含祖细胞的顶端多形层,并探讨了这些细胞的表型和命运是否需要以前在发育长骨中研究过的印度刺猬(Ihh)信号。在新生小鼠的髁突中,顶端多形/祖细胞层约有 10 层细胞厚,表达关节基质标志物腱糖蛋白 C(Tenascin-C,Tn-C),而下方的厚细胞层表达 Tn-C 以及软骨形成的主调控因子 Sox9。1 月龄时,髁状突软骨已获得其全长,但沿其主要长轴变细,并出现肥大软骨细胞。3 月龄时,关节软骨由 2-3 层细胞厚的浅层细胞和表达 Tn-C 和 Sox9 的软骨祖细胞组成,以及底部区域由显示垂直基质隔的软骨细胞组成。在幼鼠中进行的 EdU 细胞示踪显示,软骨祖细胞向软骨细胞和肥大软骨细胞的转化分别需要约 48 和 72 小时。值得注意的是,在 3 月龄的小鼠中,EdU 注射在 96 小时后标记了祖细胞和成熟的软骨细胞。在幼年/成年早期小鼠中条件性敲除 Ihh 会损害软骨祖细胞的组织和功能,并导致软骨祖细胞和软骨细胞增殖减少。随着时间的推移,突变髁突的表型恶化,表现为凋亡软骨细胞发生率增加、异位软骨细胞肥大、软骨细胞柱排列紊乱和软骨下骨恶化。在髁突顶端细胞的微团培养中,Hh 处理刺激软骨生成和碱性磷酸酶(APase)活性,而 HhAntag 处理则抑制两者。我们的研究结果表明,软骨祖细胞层在出生后持续参与髁突生长,其组织和功能依赖于 hedgehog 信号。

相似文献

1
Roles of Ihh signaling in chondroprogenitor function in postnatal condylar cartilage.
Matrix Biol. 2018 Apr;67:15-31. doi: 10.1016/j.matbio.2018.02.011. Epub 2018 Feb 12.
2
TMJ development and growth require primary cilia function.
J Dent Res. 2011 Aug;90(8):988-94. doi: 10.1177/0022034511409407. Epub 2011 May 12.
3
Osteophyte formation and matrix mineralization in a TMJ osteoarthritis mouse model are associated with ectopic hedgehog signaling.
Matrix Biol. 2016 May-Jul;52-54:339-354. doi: 10.1016/j.matbio.2016.03.001. Epub 2016 Mar 3.
4
The Roles of Indian Hedgehog Signaling in TMJ Formation.
Int J Mol Sci. 2019 Dec 13;20(24):6300. doi: 10.3390/ijms20246300.
5
7
The effects of static pressure on chondrogenic and osteogenic differentiation in condylar chondrocytes from temporomandibular joint.
Arch Oral Biol. 2015 Apr;60(4):622-30. doi: 10.1016/j.archoralbio.2015.01.003. Epub 2015 Jan 13.
8
Deletion of Runx2 in condylar chondrocytes disrupts TMJ tissue homeostasis.
J Cell Physiol. 2019 Apr;234(4):3436-3444. doi: 10.1002/jcp.26761. Epub 2018 Nov 1.

引用本文的文献

1
Effective IHH gene knockout by CRISPR/Cas9 system in chicken DF-1 cells.
Poult Sci. 2025 Jun 16;104(9):105433. doi: 10.1016/j.psj.2025.105433.
4
A PTHrP Gradient Drives Mandibular Condylar Chondrogenesis via Runx2.
J Dent Res. 2024 Jan;103(1):91-100. doi: 10.1177/00220345231208175. Epub 2023 Dec 6.
5
Signaling Mechanisms of Stem Cell Therapy for Intervertebral Disc Degeneration.
Biomedicines. 2023 Sep 6;11(9):2467. doi: 10.3390/biomedicines11092467.
6
Exogenous Indian hedgehog antagonist damages intervertebral discs homeostasis in adult mice.
J Orthop Translat. 2022 Oct 6;36:164-176. doi: 10.1016/j.jot.2022.09.009. eCollection 2022 Sep.
7
Anabolic Response of Intermittent Parathyroid Hormone and Alendronate on the Osteochondral Tissue of TMJ.
Cartilage. 2022 Dec;13(4):171-183. doi: 10.1177/19476035221109229. Epub 2022 Oct 14.
8
Gli1+ Osteogenic Progenitors Contribute to Condylar Development and Fracture Repair.
Front Cell Dev Biol. 2022 Mar 7;10:819689. doi: 10.3389/fcell.2022.819689. eCollection 2022.
9
SAG therapy restores bone growth and reduces enchondroma incidence in a model of skeletal chondrodysplasias caused by Ihh deficiency.
Mol Ther Methods Clin Dev. 2021 Oct 1;23:461-475. doi: 10.1016/j.omtm.2021.09.015. eCollection 2021 Dec 10.
10
Type V collagen regulates the structure and biomechanics of TMJ condylar cartilage: A fibrous-hyaline hybrid.
Matrix Biol. 2021 Aug;102:1-19. doi: 10.1016/j.matbio.2021.07.002. Epub 2021 Jul 24.

本文引用的文献

1
Biomechanical properties of murine TMJ articular disc and condyle cartilage via AFM-nanoindentation.
J Biomech. 2017 Jul 26;60:134-141. doi: 10.1016/j.jbiomech.2017.06.031. Epub 2017 Jun 27.
4
Extracellular Matrix Mediates BMP-2 in a Model of Temporomandibular Joint Osteoarthritis.
Cells Tissues Organs. 2017;204(2):84-92. doi: 10.1159/000464102. Epub 2017 Apr 19.
5
Confocal imaging of mouse mandibular condyle cartilage.
Sci Rep. 2017 Mar 7;7:43848. doi: 10.1038/srep43848.
6
Quantitative proteomics analysis of cartilage response to mechanical injury and cytokine treatment.
Matrix Biol. 2017 Nov;63:11-22. doi: 10.1016/j.matbio.2016.12.004. Epub 2016 Dec 15.
8
The Evolution of TMD Diagnosis: Past, Present, Future.
J Dent Res. 2016 Sep;95(10):1093-101. doi: 10.1177/0022034516653922. Epub 2016 Jun 16.
9
Osteophyte formation and matrix mineralization in a TMJ osteoarthritis mouse model are associated with ectopic hedgehog signaling.
Matrix Biol. 2016 May-Jul;52-54:339-354. doi: 10.1016/j.matbio.2016.03.001. Epub 2016 Mar 3.
10
Genetic Influences on Temporomandibular Joint Development and Growth.
Curr Top Dev Biol. 2015;115:85-109. doi: 10.1016/bs.ctdb.2015.07.008. Epub 2015 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验