Suppr超能文献

细胞外基质在颞下颌关节骨关节炎模型中介导骨形态发生蛋白-2

Extracellular Matrix Mediates BMP-2 in a Model of Temporomandibular Joint Osteoarthritis.

作者信息

Shirakura Maya, Kram Vardit, Robinson Jennifer, Sikka Sheena, Kilts Tina M, Wadhwa Sunil, Young Marian F

机构信息

NIDCR, National Institutes of Health, Bethesda, MD, USA.

出版信息

Cells Tissues Organs. 2017;204(2):84-92. doi: 10.1159/000464102. Epub 2017 Apr 19.

Abstract

Temporomandibular joint (TMJ) osteoarthritis (OA) is a complex disease that affects both cartilage and subchondral bone. It is accompanied by loss of extracellular matrix (ECM) and may be controlled by bone morphogenetic protein-2 (BMP-2). We analyzed the effect of BMP-2 in both cartilage and subchondral bone in a TMJ-OA animal model that is deficient in biglycan (Bgn) and fibromodulin (Fmod) (Bgn-/-Fmod-/-). Whole mandibles were dissected from 3-week-old wild-type (WT) and Bgn-/-Fmod-/- mice and incubated with and without 250 µg/mL BMP-2 for 2 days using an explant culture system. Condyle growth was measured by microCT and the expression levels of cartilage and bone-related genes were analyzed using RT-PCR or by immunohistochemistry from condyles that contained an intact cartilage/subchondral bone interface. Osteoclast activity was estimated by tartrate-resistant acid phosphatase (TRAP) staining and by TRAP, Rankl, and Adamts4 mRNA expression levels. Our results showed that most parameters examined were slightly up-regulated in WT samples treated with BMP-2, and this up-regulation was significantly enhanced in the Bgn-/-Fmod-/- mice. The up-regulation of both catabolic and anabolic agents did not appear to positively affect the overall growth of Bgn-/-Fmod-/- condyles compared to WT controls. In summary, the up-regulation of both anabolic and catabolic genes in the WT and Bgn-/-Fmod-/- TMJs treated with BMP-2 suggests that BMP increases matrix turnover in the condyle, and, further, that Bgn and Fmod could have protective roles in regulating this process.

摘要

颞下颌关节(TMJ)骨关节炎(OA)是一种影响软骨和软骨下骨的复杂疾病。它伴有细胞外基质(ECM)的丢失,并且可能受骨形态发生蛋白-2(BMP-2)调控。我们在一种缺乏双糖链蛋白聚糖(Bgn)和纤调蛋白(Fmod)(Bgn-/-Fmod-/-)的TMJ-OA动物模型中分析了BMP-2在软骨和软骨下骨中的作用。从3周龄的野生型(WT)和Bgn-/-Fmod-/-小鼠身上取出整个下颌骨,使用外植体培养系统在有和没有250µg/mL BMP-2的条件下孵育2天。通过微型计算机断层扫描(microCT)测量髁突生长,并使用逆转录聚合酶链反应(RT-PCR)或通过免疫组织化学从含有完整软骨/软骨下骨界面的髁突中分析软骨和骨相关基因的表达水平。通过抗酒石酸酸性磷酸酶(TRAP)染色以及TRAP、核因子κB受体活化因子配体(Rankl)和含血小板反应蛋白基序的解聚蛋白样金属蛋白酶4(Adamts4)的mRNA表达水平来评估破骨细胞活性。我们的结果表明,在用BMP-2处理的WT样本中,大多数检测参数略有上调,而在Bgn-/-Fmod-/-小鼠中这种上调显著增强。与WT对照相比,分解代谢和合成代谢因子的上调似乎并未对Bgn-/-Fmod-/-髁突的整体生长产生积极影响。总之,用BMP-2处理的WT和Bgn-/-Fmod-/-颞下颌关节中合成代谢和分解代谢基因的上调表明,BMP增加了髁突中的基质周转,此外,Bgn和Fmod在调节这一过程中可能具有保护作用。

相似文献

1
Extracellular Matrix Mediates BMP-2 in a Model of Temporomandibular Joint Osteoarthritis.
Cells Tissues Organs. 2017;204(2):84-92. doi: 10.1159/000464102. Epub 2017 Apr 19.
2
Role of subchondral bone during early-stage experimental TMJ osteoarthritis.
J Dent Res. 2011 Nov;90(11):1331-8. doi: 10.1177/0022034511421930. Epub 2011 Sep 13.
4
Analysis of microarchitectural changes in a mouse temporomandibular joint osteoarthritis model.
Arch Oral Biol. 2009 Dec;54(12):1091-8. doi: 10.1016/j.archoralbio.2009.10.001. Epub 2009 Nov 6.
5
Mice deficient in biglycan and fibromodulin as a model for temporomandibular joint osteoarthritis.
Cells Tissues Organs. 2005;181(3-4):136-43. doi: 10.1159/000091375.
7
Accelerated osteoarthritis in the temporomandibular joint of biglycan/fibromodulin double-deficient mice.
Osteoarthritis Cartilage. 2005 Sep;13(9):817-27. doi: 10.1016/j.joca.2005.04.016.
8
Long-term haplodeficency of DSPP causes temporomandibular joint osteoarthritis in mice.
BMC Oral Health. 2024 May 14;24(1):569. doi: 10.1186/s12903-024-04320-8.
10
Biglycan deficiency alleviates intestinal fibrosis through BMP-7-mediated Smad1/5/8 signaling.
J Crohns Colitis. 2025 May 8;19(5). doi: 10.1093/ecco-jcc/jjaf065.

引用本文的文献

2
Long-term haplodeficency of DSPP causes temporomandibular joint osteoarthritis in mice.
BMC Oral Health. 2024 May 14;24(1):569. doi: 10.1186/s12903-024-04320-8.
3
Osteoarthritis of the Temporomandibular Joint: A Narrative Overview.
Medicina (Kaunas). 2022 Dec 20;59(1):8. doi: 10.3390/medicina59010008.
4
A novel approach to establishing a temporomandibular joint fibrocartilage cell line.
J Dent Sci. 2022 Jul;17(3):1378-1386. doi: 10.1016/j.jds.2022.04.017. Epub 2022 May 12.
5
Molecular signaling in temporomandibular joint osteoarthritis.
J Orthop Translat. 2021 Sep 10;32:21-27. doi: 10.1016/j.jot.2021.07.001. eCollection 2022 Jan.
6
The effects of altered BMP4 signaling in first branchial-arch-derived murine embryonic orofacial tissues.
Int J Oral Sci. 2021 Nov 29;13(1):40. doi: 10.1038/s41368-021-00142-4.
7
BMP2 Is Required for Postnatal Maintenance of Osteochondral Tissues of the Temporomandibular Joint.
Cartilage. 2021 Dec;13(2_suppl):734S-743S. doi: 10.1177/1947603520980158. Epub 2020 Dec 14.
8
Conditional Knockout of PKC-δ in Osteoclasts Favors Bone Mass Accrual in Males Due to Decreased Osteoclast Function.
Front Cell Dev Biol. 2020 Jun 9;8:450. doi: 10.3389/fcell.2020.00450. eCollection 2020.
9
Fibromodulin - A New Target of Osteoarthritis Management?
Front Pharmacol. 2019 Dec 10;10:1475. doi: 10.3389/fphar.2019.01475. eCollection 2019.
10
CTX-II and YKL-40 in early diagnosis and treatment evaluation of osteoarthritis.
Exp Ther Med. 2019 Jan;17(1):423-431. doi: 10.3892/etm.2018.6960. Epub 2018 Nov 12.

本文引用的文献

1
Development of temporomandibular joint arthritis: The use of animal models.
Joint Bone Spine. 2017 Mar;84(2):145-151. doi: 10.1016/j.jbspin.2016.05.016. Epub 2016 Jul 21.
2
Genetic Influences on Temporomandibular Joint Development and Growth.
Curr Top Dev Biol. 2015;115:85-109. doi: 10.1016/bs.ctdb.2015.07.008. Epub 2015 Oct 1.
3
Excess BMP Signaling in Heterotopic Cartilage Forming in Prg4-null TMJ Discs.
J Dent Res. 2016 Mar;95(3):292-301. doi: 10.1177/0022034515613508. Epub 2015 Nov 3.
5
Current understanding of pathogenesis and treatment of TMJ osteoarthritis.
J Dent Res. 2015 May;94(5):666-73. doi: 10.1177/0022034515574770. Epub 2015 Mar 5.
6
BMPRIA mediated signaling is essential for temporomandibular joint development in mice.
PLoS One. 2014 Aug 5;9(8):e101000. doi: 10.1371/journal.pone.0101000. eCollection 2014.
7
The role of small leucine-rich proteoglycans in osteoarthritis pathogenesis.
Osteoarthritis Cartilage. 2014 Jul;22(7):896-903. doi: 10.1016/j.joca.2014.04.026. Epub 2014 May 2.
9
Epidemiology, diagnosis, and treatment of temporomandibular disorders.
Dent Clin North Am. 2013 Jul;57(3):465-79. doi: 10.1016/j.cden.2013.04.006.
10
Development of the endochondral skeleton.
Cold Spring Harb Perspect Biol. 2013 Jan 1;5(1):a008334. doi: 10.1101/cshperspect.a008334.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验