Suppr超能文献

平移不变系统的子系统本征态热化假说。

Subsystem eigenstate thermalization hypothesis for translation invariant systems.

作者信息

Huang Zhiqiang, Guo Xiao-Kan

机构信息

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, <a href="https://ror.org/034t30j35">Chinese Academy of Sciences</a>, Wuhan 430071, China.

Department of Applied Mathematics, <a href="https://ror.org/04y8njc86">Yancheng Institute of Technology</a>, Jiangsu 224051, China.

出版信息

Phys Rev E. 2024 May;109(5-1):054120. doi: 10.1103/PhysRevE.109.054120.

Abstract

The eigenstate thermalization hypothesis for translation invariant quantum spin systems has been proved recently by using random matrices. In this paper, we study the subsystem version of the eigenstate thermalization hypothesis for translation invariant quantum systems without referring to random matrices. We first find a relation between the quantum variance and the Belavkin-Staszewski relative entropy. Then, by showing the small upper bounds on the quantum variance and the Belavkin-Staszewski relative entropy, we prove the subsystem eigenstate thermalization hypothesis for translation invariant quantum systems with an algebraic speed of convergence in an elementary way. The proof holds for most of the translation invariant quantum lattice models with exponential or algebraic decays of correlations.

摘要

平移不变量子自旋系统的本征态热化假设最近已通过使用随机矩阵得到证明。在本文中,我们研究平移不变量子系统的本征态热化假设的子系统版本,而不涉及随机矩阵。我们首先找到量子方差与贝拉夫金 - 斯塔谢夫斯基相对熵之间的关系。然后,通过给出量子方差和贝拉夫金 - 斯塔谢夫斯基相对熵的小上界,我们以一种基本的方式证明了平移不变量子系统的子系统本征态热化假设,其收敛速度为代数速度。该证明适用于大多数具有指数或代数关联衰减的平移不变量子晶格模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验