Huang Zhiqiang, Guo Xiao-Kan
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, <a href="https://ror.org/034t30j35">Chinese Academy of Sciences</a>, Wuhan 430071, China.
Department of Applied Mathematics, <a href="https://ror.org/04y8njc86">Yancheng Institute of Technology</a>, Jiangsu 224051, China.
Phys Rev E. 2024 May;109(5-1):054120. doi: 10.1103/PhysRevE.109.054120.
The eigenstate thermalization hypothesis for translation invariant quantum spin systems has been proved recently by using random matrices. In this paper, we study the subsystem version of the eigenstate thermalization hypothesis for translation invariant quantum systems without referring to random matrices. We first find a relation between the quantum variance and the Belavkin-Staszewski relative entropy. Then, by showing the small upper bounds on the quantum variance and the Belavkin-Staszewski relative entropy, we prove the subsystem eigenstate thermalization hypothesis for translation invariant quantum systems with an algebraic speed of convergence in an elementary way. The proof holds for most of the translation invariant quantum lattice models with exponential or algebraic decays of correlations.
平移不变量子自旋系统的本征态热化假设最近已通过使用随机矩阵得到证明。在本文中,我们研究平移不变量子系统的本征态热化假设的子系统版本,而不涉及随机矩阵。我们首先找到量子方差与贝拉夫金 - 斯塔谢夫斯基相对熵之间的关系。然后,通过给出量子方差和贝拉夫金 - 斯塔谢夫斯基相对熵的小上界,我们以一种基本的方式证明了平移不变量子系统的子系统本征态热化假设,其收敛速度为代数速度。该证明适用于大多数具有指数或代数关联衰减的平移不变量子晶格模型。