Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic.
Phys Rev E. 2018 Jan;97(1-1):012112. doi: 10.1103/PhysRevE.97.012112.
We study the impact of quantum phase transitions (QPTs) on the distribution of exceptional points (EPs) of the Hamiltonian in the complex-extended parameter domain. Analyzing first- and second-order QPTs in the Lipkin-Meshkov-Glick model we find an exponentially and polynomially close approach of EPs to the respective critical point with increasing size of the system. If the critical Hamiltonian is subject to random perturbations of various kinds, the averaged distribution of EPs close to the critical point still carries decisive information on the QPT type. We therefore claim that properties of the EP distribution represent a parametrization-independent signature of criticality in quantum systems.
我们研究了量子相变(QPT)对哈密顿量在复数扩展参数域中奇异点(EP)分布的影响。通过分析 Lipkin-Meshkov-Glick 模型中的一级和二级 QPT,我们发现随着系统尺寸的增加,EP 以指数和多项式的方式接近相应的临界点。如果临界哈密顿量受到各种随机扰动的影响,那么接近临界点的 EP 平均分布仍然携带有关 QPT 类型的决定性信息。因此,我们声称 EP 分布的性质代表了量子系统中临界点的与参数无关的特征。