Suppr超能文献

弹性条的非对称约束下的突然失稳。

Snap-buckling in asymmetrically constrained elastic strips.

机构信息

Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.

Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.

出版信息

Phys Rev E. 2018 Jan;97(1-1):013002. doi: 10.1103/PhysRevE.97.013002.

Abstract

When a flat elastic strip is compressed along its axis, it is bent in one of two possible directions via spontaneous symmetry breaking, forming a cylindrical arc. This is a phenomenon well known as Euler buckling. When this cylindrical section is pushed in the other direction, the bending direction can suddenly reverse. This instability is called "snap-through buckling" and is one of the elementary shape transitions in a prestressed thin structure. Combining experiments and theory, we study snap-buckling of an elastic strip with one end hinged and the other end clamped. These asymmetric boundary constraints break the intrinsic symmetry of the strip, generating mechanical behaviors, including largely hysteretic but reproducible force responses and switchlike discontinuous shape changes. We establish the set of exact analytical solutions to fully explain all our major experimental and numerical findings. Asymmetric boundary conditions arise naturally in diverse situations when a thin object is in contact with a solid surface at one end. The introduction of asymmetry through boundary conditions yields new insight into complex and programmable functionalities in material and industrial design.

摘要

当扁平弹性条沿其轴压缩时,通过自发对称破缺,它在两个可能的方向之一弯曲,形成一个圆柱弧。这是一个众所周知的欧拉屈曲现象。当这个圆柱部分被推向另一个方向时,弯曲方向可以突然反转。这种不稳定性称为“突跳屈曲”,是预应力薄结构中的基本形状转变之一。通过实验和理论相结合,我们研究了一端铰接另一端固定的弹性条的突跳屈曲。这些不对称的边界约束打破了条带的内在对称性,产生了机械行为,包括很大但可重复的滞后力响应和开关式不连续形状变化。我们建立了一套精确的解析解,以完全解释我们所有的主要实验和数值发现。当一个薄物体的一端与固体表面接触时,不对称的边界条件在各种情况下都会自然出现。通过边界条件引入不对称性,可以深入了解材料和工业设计中复杂和可编程的功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验