Suppr超能文献

弹性不稳定驱动的运动方式。

Elastic-instability-enabled locomotion.

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138;

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2013801118.

Abstract

Locomotion of an organism interacting with an environment is the consequence of a symmetry-breaking action in space-time. Here we show a minimal instantiation of this principle using a thin circular sheet, actuated symmetrically by a pneumatic source, using pressure to change shape nonlinearly via a spontaneous buckling instability. This leads to a polarized, bilaterally symmetric cone that can walk on land and swim in water. In either mode of locomotion, the emergence of shape asymmetry in the sheet leads to an asymmetric interaction with the environment that generates movement--via anisotropic friction on land, and via directed inertial forces in water. Scaling laws for the speed of the sheet of the actuator as a function of its size, shape, and the frequency of actuation are consistent with our observations. The presence of easily controllable reversible modes of buckling deformation further allows for a change in the direction of locomotion in open arenas and the ability to squeeze through confined environments--both of which we demonstrate using simple experiments. Our simple approach of harnessing elastic instabilities in soft structures to drive locomotion enables the design of novel shape-changing robots and other bioinspired machines at multiple scales.

摘要

生物体与环境相互作用的运动是时空对称性破缺作用的结果。在这里,我们使用一个薄的圆形薄片演示了这一原理的最小实例,该薄片通过气动源对称地驱动,通过自发的屈曲不稳定性利用压力来非线性地改变形状。这导致了一个极化的、双侧对称的圆锥体,可以在陆地上行走,也可以在水中游泳。在任何一种运动模式中,薄片形状的不对称性的出现都会导致与环境的不对称相互作用,从而产生运动——在陆地上通过各向异性摩擦,在水中通过定向惯性力。作为致动器薄片大小、形状和致动频率的函数的速度的标度定律与我们的观察结果一致。可控制的可逆屈曲变形模式的存在进一步允许在开放场地上改变运动方向,并能够通过受限环境——我们都使用简单的实验来证明这一点。我们利用软结构中的弹性不稳定性来驱动运动的简单方法,可以在多个尺度上设计新型的形状变化机器人和其他仿生机器。

相似文献

1
Elastic-instability-enabled locomotion.弹性不稳定驱动的运动方式。
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2013801118.
2
Kirigami Makes a Soft Magnetic Sheet Crawl.折纸切割使软磁片能够爬行。
Adv Sci (Weinh). 2023 Sep;10(25):e2301895. doi: 10.1002/advs.202301895. Epub 2023 Jun 25.
4
Switchable Adhesion Actuator for Amphibious Climbing Soft Robot.用于两栖攀爬软机器人的可切换粘附致动器
Soft Robot. 2018 Oct;5(5):592-600. doi: 10.1089/soro.2017.0133. Epub 2018 Jun 29.
5
EuMoBot: replicating euglenoid movement in a soft robot.在软体机器人中复制眼虫运动
J R Soc Interface. 2018 Nov 21;15(148):20180301. doi: 10.1098/rsif.2018.0301.
7
FifoBots: Foldable Soft Robots for Flipping Locomotion.FifoBots:用于翻转运动的可折叠软体机器人。
Soft Robot. 2019 Aug;6(4):532-559. doi: 10.1089/soro.2018.0103. Epub 2019 Apr 24.
10
Soft, Rotating Pneumatic Actuator.柔软、旋转气动致动器。
Soft Robot. 2017 Sep;4(3):297-304. doi: 10.1089/soro.2017.0017. Epub 2017 May 30.

引用本文的文献

1
Exotic mechanical properties enabled by countersnapping instabilities.由反扣失稳实现的奇异力学性能。
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2423301122. doi: 10.1073/pnas.2423301122. Epub 2025 Apr 17.
2
Non-reciprocal multifarious self-organization.非互易的多形态自组织。
Nat Nanotechnol. 2023 Jan;18(1):79-85. doi: 10.1038/s41565-022-01258-2. Epub 2022 Dec 12.
4
Magnetohydrodynamic levitation for high-performance flexible pumps.磁流体动力悬浮用于高性能柔性泵。
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2203116119. doi: 10.1073/pnas.2203116119. Epub 2022 Jul 11.

本文引用的文献

2
Soft Robotics.《软体机器人学》期刊。
Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4258-4273. doi: 10.1002/anie.201800907. Epub 2018 Mar 8.
3
Spikes alone do not behavior make: why neuroscience needs biomechanics.棘刺本身不会行为:为什么神经科学需要生物力学。
Curr Opin Neurobiol. 2011 Oct;21(5):816-22. doi: 10.1016/j.conb.2011.05.017. Epub 2011 Jun 15.
4
Models and the scaling of energy costs for locomotion.运动能量消耗的模型与标度
J Exp Biol. 2005 May;208(Pt 9):1645-52. doi: 10.1242/jeb.01484.
5
Biomimetic ratcheting motion of a soft, slender, sessile gel.柔软、细长、无柄凝胶的仿生棘轮运动。
Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):23-6. doi: 10.1073/pnas.2637051100. Epub 2003 Dec 17.
6
How animals move: an integrative view.动物如何移动:一种综合观点。
Science. 2000 Apr 7;288(5463):100-6. doi: 10.1126/science.288.5463.100.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验