Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138;
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2013801118.
Locomotion of an organism interacting with an environment is the consequence of a symmetry-breaking action in space-time. Here we show a minimal instantiation of this principle using a thin circular sheet, actuated symmetrically by a pneumatic source, using pressure to change shape nonlinearly via a spontaneous buckling instability. This leads to a polarized, bilaterally symmetric cone that can walk on land and swim in water. In either mode of locomotion, the emergence of shape asymmetry in the sheet leads to an asymmetric interaction with the environment that generates movement--via anisotropic friction on land, and via directed inertial forces in water. Scaling laws for the speed of the sheet of the actuator as a function of its size, shape, and the frequency of actuation are consistent with our observations. The presence of easily controllable reversible modes of buckling deformation further allows for a change in the direction of locomotion in open arenas and the ability to squeeze through confined environments--both of which we demonstrate using simple experiments. Our simple approach of harnessing elastic instabilities in soft structures to drive locomotion enables the design of novel shape-changing robots and other bioinspired machines at multiple scales.
生物体与环境相互作用的运动是时空对称性破缺作用的结果。在这里,我们使用一个薄的圆形薄片演示了这一原理的最小实例,该薄片通过气动源对称地驱动,通过自发的屈曲不稳定性利用压力来非线性地改变形状。这导致了一个极化的、双侧对称的圆锥体,可以在陆地上行走,也可以在水中游泳。在任何一种运动模式中,薄片形状的不对称性的出现都会导致与环境的不对称相互作用,从而产生运动——在陆地上通过各向异性摩擦,在水中通过定向惯性力。作为致动器薄片大小、形状和致动频率的函数的速度的标度定律与我们的观察结果一致。可控制的可逆屈曲变形模式的存在进一步允许在开放场地上改变运动方向,并能够通过受限环境——我们都使用简单的实验来证明这一点。我们利用软结构中的弹性不稳定性来驱动运动的简单方法,可以在多个尺度上设计新型的形状变化机器人和其他仿生机器。