Suppr超能文献

有丝分裂波在早期胚胎发生中的作用:稳定性与速度的权衡。

Mitotic waves in the early embryogenesis of : Bistability traded for speed.

机构信息

Department of Physics, University of California, San Diego, La Jolla, CA 92093;

Department of Cell Biology, Duke University Medical Center, Durham, NC 27710.

出版信息

Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2165-E2174. doi: 10.1073/pnas.1714873115. Epub 2018 Feb 15.

Abstract

Early embryogenesis of most metazoans is characterized by rapid and synchronous cleavage divisions. Chemical waves of Cdk1 activity were previously shown to spread across embryos, and the underlying molecular processes were dissected. Here, we present the theory of the physical mechanisms that control Cdk1 waves in The in vivo dynamics of Cdk1 are captured by a transiently bistable reaction-diffusion model, where time-dependent reaction terms account for the growing level of cyclins and Cdk1 activation across the cell cycle. We identify two distinct regimes. The first one is observed in mutants of the mitotic switch. There, waves are triggered by the classical mechanism of a stable state invading a metastable one. Conversely, waves in wild type reflect a transient phase that preserves the Cdk1 spatial gradients while the overall level of Cdk1 activity is swept upward by the time-dependent reaction terms. This unique mechanism generates a wave-like spreading that differs from bistable waves for its dependence on dynamic parameters and its faster speed. Namely, the speed of "sweep" waves strikingly decreases as the strength of the reaction terms increases and scales as the powers 3/4, -1/2, and 7/12 of Cdk1 molecular diffusivity, noise amplitude, and rate of increase of Cdk1 activity in the cell-cycle S phase, respectively. Theoretical predictions are supported by numerical simulations and experiments that couple quantitative measurements of Cdk1 activity and genetic perturbations of the accumulation rate of cyclins. Finally, our analysis bears upon the inhibition required to suppress Cdk1 waves at the cell-cycle pause for the maternal-to-zygotic transition.

摘要

大多数后生动物的早期胚胎发生以快速和同步的卵裂分裂为特征。先前已经表明,Cdk1 活性的化学波在胚胎中传播,并且已经解析了潜在的分子过程。在这里,我们提出了控制 Cdk1 波的物理机制理论。通过瞬态双稳态反应扩散模型捕获体内 Cdk1 的动力学,其中时变反应项解释了细胞周期中 cyclin 和 Cdk1 激活水平的增长。我们确定了两种不同的状态。第一种状态发生在有丝分裂开关的突变体中。在那里,波是由稳定状态侵入亚稳定状态的经典机制触发的。相反,在野生型中,波反映了一个瞬态阶段,该阶段在整体 Cdk1 活性水平被时变反应项向上扫动的同时,保留了 Cdk1 的空间梯度。这种独特的机制产生了一种不同于双稳态波的波状传播,因为它依赖于动态参数,并且速度更快。也就是说,作为反应项强度增加的函数,“扫掠”波的速度惊人地减小,并且与 Cdk1 分子扩散率、噪声幅度和细胞周期 S 期 Cdk1 活性增加率的 3/4、-1/2 和 7/12 的幂次成比例。理论预测得到了数值模拟和实验的支持,这些实验将 Cdk1 活性的定量测量和 cyclin 积累率的遗传扰动相结合。最后,我们的分析涉及在母体到合子过渡的细胞周期暂停期间抑制 Cdk1 波所需的抑制。

相似文献

1
Mitotic waves in the early embryogenesis of : Bistability traded for speed.有丝分裂波在早期胚胎发生中的作用:稳定性与速度的权衡。
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2165-E2174. doi: 10.1073/pnas.1714873115. Epub 2018 Feb 15.
2
Manipulating the nature of embryonic mitotic waves.调控胚胎有丝分裂波的性质。
Curr Biol. 2022 Nov 21;32(22):4989-4996.e3. doi: 10.1016/j.cub.2022.10.014. Epub 2022 Nov 3.
4
Cell cycle control during early embryogenesis.细胞周期在胚胎早期发育中的调控。
Development. 2021 Jul 1;148(13). doi: 10.1242/dev.193128. Epub 2021 Jun 24.
10
Two Bistable Switches Govern M Phase Entry.两个双稳态开关控制M期进入。
Curr Biol. 2016 Dec 19;26(24):3361-3367. doi: 10.1016/j.cub.2016.10.022. Epub 2016 Nov 23.

引用本文的文献

4
ERK synchronizes embryonic cleavages in Drosophila.细胞外信号调节激酶(ERK)使果蝇胚胎分裂同步化。
Dev Cell. 2024 Dec 2;59(23):3061-3071.e6. doi: 10.1016/j.devcel.2024.08.004. Epub 2024 Aug 28.
5
Collective effects of cell cleavage dynamics.细胞分裂动力学的集体效应。
Front Cell Dev Biol. 2024 Mar 15;12:1358971. doi: 10.3389/fcell.2024.1358971. eCollection 2024.
7
Spiking at the edge: Excitability at interfaces in reaction-diffusion systems.边缘处的尖峰:反应扩散系统中界面处的兴奋性。
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2307996120. doi: 10.1073/pnas.2307996120. Epub 2024 Jan 12.
9
Manipulating the nature of embryonic mitotic waves.调控胚胎有丝分裂波的性质。
Curr Biol. 2022 Nov 21;32(22):4989-4996.e3. doi: 10.1016/j.cub.2022.10.014. Epub 2022 Nov 3.
10
Quantitative models for building and growing fated small cell networks.构建和生长特定小细胞网络的定量模型。
Interface Focus. 2022 Jun 10;12(4):20210082. doi: 10.1098/rsfs.2021.0082. eCollection 2022 Aug 6.

本文引用的文献

2
Measuring time during early embryonic development.测量早期胚胎发育过程中的时间。
Semin Cell Dev Biol. 2016 Jul;55:80-8. doi: 10.1016/j.semcdb.2016.03.013. Epub 2016 Mar 16.
3
Growing an Embryo from a Single Cell: A Hurdle in Animal Life.从单细胞培育胚胎:动物生命中的一个障碍。
Cold Spring Harb Perspect Biol. 2015 Aug 7;7(11):a019042. doi: 10.1101/cshperspect.a019042.
4
How Does the Xenopus laevis Embryonic Cell Cycle Avoid Spatial Chaos?非洲爪蟾胚胎细胞周期如何避免空间混乱?
Cell Rep. 2015 Aug 4;12(5):892-900. doi: 10.1016/j.celrep.2015.06.070. Epub 2015 Jul 23.
6
A computational model of nuclear self-organisation in syncytial embryos.合胞体胚胎中细胞核自我组织的计算模型。
J Theor Biol. 2014 Oct 21;359:92-100. doi: 10.1016/j.jtbi.2014.06.001. Epub 2014 Jun 12.
7
The syncytial Drosophila embryo as a mechanically excitable medium.合胞体果蝇胚胎作为一种可兴奋的机械介质。
PLoS One. 2013 Oct 30;8(10):e77216. doi: 10.1371/journal.pone.0077216. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验