Department of Biomedical Sciences, Seoul National University, Seoul, Korea.
Department of Nuclear Medicine, Seoul National University, Seoul, Korea.
J Nucl Med. 2018 Oct;59(10):1624-1629. doi: 10.2967/jnumed.117.202317. Epub 2018 Feb 15.
Simultaneous reconstruction of activity and attenuation using the maximum-likelihood reconstruction of activity and attenuation (MLAA) augmented by time-of-flight information is a promising method for PET attenuation correction. However, it still suffers from several problems, including crosstalk artifacts, slow convergence speed, and noisy attenuation maps (μ-maps). In this work, we developed deep convolutional neural networks (CNNs) to overcome these MLAA limitations, and we verified their feasibility using a clinical brain PET dataset. We applied the proposed method to one of the most challenging PET cases for simultaneous image reconstruction (F-fluorinated--3-fluoropropyl-2-β-carboxymethoxy-3-β-(4-iodophenyl)nortropane [F-FP-CIT] PET scans with highly specific binding to striatum of the brain). Three different CNN architectures (convolutional autoencoder [CAE], Unet, and Hybrid of CAE) were designed and trained to learn a CT-derived μ-map (μ-CT) from the MLAA-generated activity distribution and μ-map (μ-MLAA). The PET/CT data of 40 patients with suspected Parkinson disease were used for 5-fold cross-validation. For the training of CNNs, 800,000 transverse PET and CT slices augmented from 32 patient datasets were used. The similarity to μ-CT of the CNN-generated μ-maps (μ-CAE, μ-Unet, and μ-Hybrid) and μ-MLAA was compared using Dice similarity coefficients. In addition, we compared the activity concentration of specific (striatum) and nonspecific (cerebellum and occipital cortex) binding regions and the binding ratios in the striatum in the PET activity images reconstructed using those μ-maps. The CNNs generated less noisy and more uniform μ-maps than the original μ-MLAA. Moreover, the air cavities and bones were better resolved in the proposed CNN outputs. In addition, the proposed deep learning approach was useful for mitigating the crosstalk problem in the MLAA reconstruction. The Hybrid network of CAE and Unet yielded the most similar μ-maps to μ-CT (Dice similarity coefficient in the whole head = 0.79 in the bone and 0.72 in air cavities), resulting in only about a 5% error in activity and binding ratio quantification. The proposed deep learning approach is promising for accurate attenuation correction of activity distribution in time-of-flight PET systems.
使用最大似然重建的活动和衰减(MLAA)同时重建活动和衰减,同时利用飞行时间信息进行增强,这是一种很有前途的正电子发射断层扫描(PET)衰减校正方法。然而,它仍然存在一些问题,包括串扰伪影、收敛速度慢以及衰减图(μ 图)噪声大。在这项工作中,我们开发了深度卷积神经网络(CNN)来克服这些 MLAA 限制,并使用临床脑 PET 数据集验证了它们的可行性。我们将提出的方法应用于同时进行图像重建最具挑战性的 PET 病例之一(氟代 -3-氟丙基-2-β-羧基甲氧基-3-β-(4-碘苯基)降莨菪烷[F-FP-CIT] PET 扫描,其对大脑纹状体具有高度特异性结合)。设计并训练了三种不同的卷积神经网络架构(卷积自动编码器[CAE]、Unet 和 CAE 的混合体),以从 MLAA 生成的活动分布和μ 图(μ-MLAA)中学习 CT 衍生的μ 图(μ-CT)。使用 5 倍交叉验证对 40 名疑似帕金森病患者的 PET/CT 数据进行分析。对于 CNN 的训练,使用从 32 个患者数据集扩充的 80 万个横向 PET 和 CT 切片。使用 Dice 相似系数比较 CNN 生成的μ 图(μ-CAE、μ-Unet 和μ-Hybrid)与μ-MLAA 的μ-CT 相似性。此外,我们比较了使用这些μ 图重建的 PET 活动图像中特异性(纹状体)和非特异性(小脑和枕叶皮层)结合区域的活性浓度和纹状体中的结合比。与原始μ-MLAA 相比,CNN 生成的μ 图噪声更小,均匀性更高。此外,所提出的 CNN 输出更好地解决了空气腔和骨骼的问题。此外,该深度学习方法有助于减轻 MLAA 重建中的串扰问题。CAE 和 Unet 的混合网络产生的μ 图与μ-CT 最为相似(整个头部的 Dice 相似系数在骨骼中为 0.79,在空气腔中为 0.72),活性和结合比定量的误差约为 5%。所提出的深度学习方法有望实现飞行时间 PET 系统中活动分布的精确衰减校正。