Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
Hussman Institute for Autism, 801 West Baltimore Street, Baltimore, MD, 21201, USA.
Cell Death Dis. 2018 Feb 15;9(3):272. doi: 10.1038/s41419-018-0306-6.
Apoptosis and programmed necrosis (necroptosis) determine cell fate, and antagonize infection. Execution of these complementary death pathways involves the formation of receptor-interacting protein kinase 1 (RIPK1) containing complexes. RIPK1 binds to adaptor proteins, such as TRIF (Toll-IL-1 receptor-domain-containing-adaptor-inducing interferon-beta factor), FADD (Fas-associated-protein with death domain), NEMO (NF-κB regulatory subunit IKKγ), SQSTM1 (sequestosome 1/p62), or RIPK3 (receptor-interacting protein kinase 3), which are involved in RNA sensing, NF-κB signaling, autophagosome formation, apoptosis, and necroptosis. We report that a range of rhinoviruses impair apoptosis and necroptosis in epithelial cells late in infection. Unlike the double-strand (ds) RNA mimetic poly I:C (polyinosinic:polycytidylic acid), the exposure of dsRNA to toll-like receptor 3 (TLR3) in rhinovirus-infected cells did not lead to apoptosis execution. Accordingly, necroptosis and the production of ROS (reactive oxygen species) were not observed late in infection, when RIPK3 was absent. Instead, a virus-induced alternative necrotic cell death pathway proceeded, which led to membrane rupture, indicated by propidium iodide staining. The impairment of dsRNA-induced apoptosis late in infection was controlled by the viral 3C-protease (3Cpro), which disrupted RIPK1-TRIF/FADD /SQSTM1 immune-complexes. 3Cpro and 3C precursors were found to coimmuno-precipitate with RIPK1, cleaving the RIPK1 death-domain, and generating N-terminal RIPK1 fragments. The depletion of RIPK1 or chemical inhibition of its kinase at the N-terminus did not interfere with virus progeny formation or cell fate. The data show that rhinoviruses suppress apoptosis and necroptosis, and release progeny by an alternative cell death pathway, which is controlled by viral proteases modifying innate immune complexes.
细胞凋亡和程序性细胞坏死(坏死性凋亡)决定细胞命运,并拮抗感染。这些互补死亡途径的执行涉及包含受体相互作用蛋白激酶 1(RIPK1)的复合物的形成。RIPK1 与衔接蛋白结合,如 TRIF(Toll-IL-1 受体结构域含有衔接诱导干扰素-β因子)、FADD( Fas 相关蛋白死亡结构域)、NEMO(NF-κB 调节亚基 IKKγ)、SQSTM1(自噬体 1/p62)或 RIPK3(受体相互作用蛋白激酶 3),它们参与 RNA 感应、NF-κB 信号转导、自噬体形成、细胞凋亡和坏死性凋亡。我们报告说,一系列鼻病毒在感染后期损害上皮细胞中的细胞凋亡和坏死性凋亡。与双链(ds)RNA 模拟物聚 I:C(聚肌苷酸:聚胞苷酸)不同,dsRNA 暴露于鼻病毒感染细胞中的 Toll 样受体 3(TLR3)不会导致细胞凋亡的执行。因此,在感染后期当 RIPK3 不存在时,不会观察到坏死性凋亡和活性氧物质(ROS)的产生。相反,进行了一种病毒诱导的替代坏死细胞死亡途径,导致膜破裂,碘化丙啶染色表明。病毒诱导的 3C 蛋白酶(3Cpro)在感染后期抑制 dsRNA 诱导的细胞凋亡,破坏了 RIPK1-TRIF/FADD/SQSTM1 免疫复合物。发现 3Cpro 和 3C 前体与 RIPK1 共免疫沉淀,切割 RIPK1 死亡结构域,并产生 N 端 RIPK1 片段。RIPK1 的耗尽或其 N 端激酶的化学抑制不干扰病毒子代形成或细胞命运。数据表明,鼻病毒通过一种替代细胞死亡途径抑制细胞凋亡和坏死性凋亡,并释放子代,该途径由病毒蛋白酶修饰先天免疫复合物控制。