Suppr超能文献

用于分析组织内脂素与乳腺癌进展中临床病理因素之间相互作用的累积受试者工作特征曲线

Cumulative receiver operating characteristics for analyzing interaction between tissue visfatin and clinicopathologic factors in breast cancer progression.

作者信息

Moi Sin-Hua, Lee Yi-Chen, Chuang Li-Yeh, Yuan Shyng-Shiou F, Ou-Yang Fu, Hou Ming-Feng, Yang Cheng-Hong, Chang Hsueh-Wei

机构信息

1Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan.

Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.

出版信息

Cancer Cell Int. 2018 Feb 9;18:19. doi: 10.1186/s12935-018-0517-z. eCollection 2018.

Abstract

BACKGROUND

Visfatin has been reported to be associated with breast cancer progression, but the interaction between the visfatin and clinicopathologic factors in breast cancer progression status requires further investigation. To address this problem, it is better to simultaneously consider multiple factors in sensitivity and specificity assays.

METHODS

In this study, a dataset for 105 breast cancer patients (84 disease-free and 21 progressing) were chosen. Individual and cumulative receiver operating characteristics (ROC) were used to analyze the impact of each factor along with interaction effects.

RESULTS

In individual ROC analysis, only 3 of 13 factors showed better performance for area under curve (AUC), i.e., AUC > 7 for hormone therapy (HT), tissue visfatin, and lymph node (LN) metastasis. Under our proposed scoring system, the cumulative ROC analysis provides higher AUC performance (0.746-0.886) than individual ROC analysis in predicting breast cancer progression. Considering the interaction between these factors, a minimum of six factors, including HT, tissue visfatin, LN metastasis, tumor stage, age, and tumor size, were identified as being highly interactive and associated with breast cancer progression, providing potential and optimal discriminators for predicting breast cancer progression.

CONCLUSION

Taken together, the cumulative ROC analysis provides better prediction for breast cancer progression than individual ROC analysis.

摘要

背景

已有报道称内脂素与乳腺癌进展相关,但内脂素与乳腺癌进展状态下临床病理因素之间的相互作用尚需进一步研究。为解决这一问题,在敏感性和特异性分析中最好同时考虑多个因素。

方法

在本研究中,选取了105例乳腺癌患者的数据集(84例无病,21例病情进展)。采用个体和累积受试者工作特征曲线(ROC)分析每个因素的影响以及相互作用效应。

结果

在个体ROC分析中,13个因素中只有3个在曲线下面积(AUC)方面表现较好,即激素治疗(HT)、组织内脂素和淋巴结(LN)转移的AUC>0.7。在我们提出的评分系统下,累积ROC分析在预测乳腺癌进展方面比个体ROC分析具有更高的AUC性能(0.746 - 0.886)。考虑到这些因素之间的相互作用,至少六个因素,包括HT、组织内脂素、LN转移、肿瘤分期、年龄和肿瘤大小,被确定为具有高度交互性且与乳腺癌进展相关,为预测乳腺癌进展提供了潜在的最佳判别指标。

结论

综上所述,累积ROC分析比个体ROC分析能更好地预测乳腺癌进展。

相似文献

引用本文的文献

6
Altered glycosylation in cancer: A promising target for biomarkers and therapeutics.癌症中的糖基化改变:生物标志物和治疗的有希望的靶点。
Biochim Biophys Acta Rev Cancer. 2021 Jan;1875(1):188464. doi: 10.1016/j.bbcan.2020.188464. Epub 2020 Nov 4.

本文引用的文献

10
Advances in Medical Management of Early Stage and Advanced Breast Cancer: 2015.早期和晚期乳腺癌的医学管理进展:2015年
Semin Radiat Oncol. 2016 Jan;26(1):59-70. doi: 10.1016/j.semradonc.2015.09.005. Epub 2015 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验