Suppr超能文献

利用全原子模拟深入研究心脏离子通道阻滞剂d-索他洛尔的脂质膜渗透作用。

Digging into Lipid Membrane Permeation for Cardiac Ion Channel Blocker d-Sotalol with All-Atom Simulations.

作者信息

DeMarco Kevin R, Bekker Slava, Clancy Colleen E, Noskov Sergei Y, Vorobyov Igor

机构信息

Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States.

Department of Pharmacology, University of California, Davis, Davis, CA, United States.

出版信息

Front Pharmacol. 2018 Feb 1;9:26. doi: 10.3389/fphar.2018.00026. eCollection 2018.

Abstract

Interactions of drug molecules with lipid membranes play crucial role in their accessibility of cellular targets and can be an important predictor of their therapeutic and safety profiles. Very little is known about spatial localization of various drugs in the lipid bilayers, their active form (ionization state) or translocation rates and therefore potency to bind to different sites in membrane proteins. All-atom molecular simulations may help to map drug partitioning kinetics and thermodynamics, thus providing in-depth assessment of drug lipophilicity. As a proof of principle, we evaluated extensively lipid membrane partitioning of d-sotalol, well-known blocker of a cardiac potassium channel K11.1 encoded by the hERG gene, with reported substantial proclivity for arrhythmogenesis. We developed the positively charged (cationic) and neutral d-sotalol models, compatible with the biomolecular CHARMM force field, and subjected them to all-atom molecular dynamics (MD) simulations of drug partitioning through hydrated lipid membranes, aiming to elucidate thermodynamics and kinetics of their translocation and thus putative propensities for hydrophobic and aqueous hERG access. We found that only a neutral form of d-sotalol accumulates in the membrane interior and can move across the bilayer within millisecond time scale, and can be relevant to a lipophilic channel access. The computed water-membrane partitioning coefficient for this form is in good agreement with experiment. There is a large energetic barrier for a cationic form of the drug, dominant in water, to cross the membrane, resulting in slow membrane translocation kinetics. However, this form of the drug can be important for an aqueous access pathway through the intracellular gate of hERG. This route will likely occur after a neutral form of a drug crosses the membrane and subsequently re-protonates. Our study serves to demonstrate a first step toward a framework for multi-scale safety pharmacology, and identifies some of the challenges that lie therein.

摘要

药物分子与脂质膜的相互作用在其到达细胞靶点的过程中起着关键作用,并且可能是其治疗和安全性的重要预测指标。对于各种药物在脂质双层中的空间定位、它们的活性形式(离子化状态)、转运速率以及因此与膜蛋白不同位点结合的能力,我们所知甚少。全原子分子模拟可能有助于描绘药物分配动力学和热力学,从而深入评估药物的亲脂性。作为原理验证,我们广泛评估了d - 索他洛尔在脂质膜中的分配情况,d - 索他洛尔是由hERG基因编码的心脏钾通道K11.1的著名阻滞剂,据报道其具有显著的致心律失常倾向。我们开发了与生物分子CHARMM力场兼容的带正电荷(阳离子)和中性的d - 索他洛尔模型,并对它们进行了药物通过水合脂质膜分配的全原子分子动力学(MD)模拟,旨在阐明其转运的热力学和动力学,以及因此对疏水性和水性hERG通道的潜在倾向。我们发现,只有中性形式的d - 索他洛尔在膜内部积累,并且可以在毫秒时间尺度内穿过双层,这可能与亲脂性通道的进入有关。这种形式的计算水 - 膜分配系数与实验结果良好吻合。药物的阳离子形式在水中占主导,其穿过膜存在很大的能量障碍,导致膜转运动力学缓慢。然而,这种药物形式对于通过hERG细胞内门的水性进入途径可能很重要。这条途径可能在药物的中性形式穿过膜并随后重新质子化后发生。我们的研究旨在展示迈向多尺度安全药理学框架的第一步,并识别其中存在的一些挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f02/5799612/d091542d4ad5/fphar-09-00026-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验