Suppr超能文献

一种预测心脏毒性的计算流程:从原子到节律。

A Computational Pipeline to Predict Cardiotoxicity: From the Atom to the Rhythm.

机构信息

From the Department of Physiology and Membrane Biology (P.-C.Y., K.R.D., P.A., M.-T.J., J.R.D.D., V.Y.-Y., I.V., C.E.C.), University of California Davis.

Biophysics Graduate Group (J.R.D.D.), University of California Davis.

出版信息

Circ Res. 2020 Apr 10;126(8):947-964. doi: 10.1161/CIRCRESAHA.119.316404. Epub 2020 Feb 24.

Abstract

RATIONALE

Drug-induced proarrhythmia is so tightly associated with prolongation of the QT interval that QT prolongation is an accepted surrogate marker for arrhythmia. But QT interval is too sensitive a marker and not selective, resulting in many useful drugs eliminated in drug discovery.

OBJECTIVE

To predict the impact of a drug from the drug chemistry on the cardiac rhythm.

METHODS AND RESULTS

In a new linkage, we connected atomistic scale information to protein, cell, and tissue scales by predicting drug-binding affinities and rates from simulation of ion channel and drug structure interactions and then used these values to model drug effects on the hERG channel. Model components were integrated into predictive models at the cell and tissue scales to expose fundamental arrhythmia vulnerability mechanisms and complex interactions underlying emergent behaviors. Human clinical data were used for model framework validation and showed excellent agreement, demonstrating feasibility of a new approach for cardiotoxicity prediction.

CONCLUSIONS

We present a multiscale model framework to predict electrotoxicity in the heart from the atom to the rhythm. Novel mechanistic insights emerged at all scales of the system, from the specific nature of proarrhythmic drug interaction with the hERG channel, to the fundamental cellular and tissue-level arrhythmia mechanisms. Applications of machine learning indicate necessary and sufficient parameters that predict arrhythmia vulnerability. We expect that the model framework may be expanded to make an impact in drug discovery, drug safety screening for a variety of compounds and targets, and in a variety of regulatory processes.

摘要

理由

药物引起的致心律失常与 QT 间期延长密切相关,因此 QT 间期延长是心律失常的公认替代标志物。但是 QT 间期是一个过于敏感的标志物,而且不具有选择性,导致许多有用的药物在药物发现过程中被淘汰。

目的

预测药物对心脏节律的影响。

方法和结果

在一个新的关联中,我们通过模拟离子通道和药物结构相互作用来预测药物结合亲和力和速率,从而将原子尺度的信息与蛋白质、细胞和组织尺度连接起来,然后使用这些值来模拟药物对 hERG 通道的影响。模型组件被整合到细胞和组织尺度的预测模型中,以揭示基本的心律失常脆弱性机制和潜在的复杂相互作用。使用人类临床数据对模型框架进行验证,结果显示出极好的一致性,证明了从原子到节律预测心脏毒性的新方法的可行性。

结论

我们提出了一种从原子到心脏电毒性的多尺度模型框架。从致心律失常药物与 hERG 通道的特定相互作用,到基本的细胞和组织水平的心律失常机制,在系统的所有尺度上都出现了新的机制见解。机器学习的应用表明了预测心律失常易感性所需的充分参数。我们预计该模型框架可以扩展到药物发现、各种化合物和靶点的药物安全性筛选以及各种监管过程中产生影响。

相似文献

引用本文的文献

4
Machine Learning-Enabled Drug-Induced Toxicity Prediction.基于机器学习的药物诱导毒性预测
Adv Sci (Weinh). 2025 Apr;12(16):e2413405. doi: 10.1002/advs.202413405. Epub 2025 Feb 3.
6
Study of the Anti-MYC Potential of Lanostane-Type Triterpenes.羊毛甾烷型三萜的抗MYC潜能研究
ACS Omega. 2024 Dec 12;9(51):50844-50858. doi: 10.1021/acsomega.4c10201. eCollection 2024 Dec 24.
8
Mechanisms of Chemical Atrial Defibrillation by Flecainide and Ibutilide.氟卡尼和伊布利特的化学性心房除颤机制
JACC Clin Electrophysiol. 2024 Dec;10(12):2658-2673. doi: 10.1016/j.jacep.2024.08.009. Epub 2024 Oct 9.

本文引用的文献

9
Sex, drugs, and funky rhythms.性、毒品和时髦的节奏。
Heart Rhythm. 2018 Apr;15(4):485-486. doi: 10.1016/j.hrthm.2018.01.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验