Karise Iara, Ornellas Fernanda, Barbosa-da-Silva Sandra, Matsuura Cristiane, Del Sol Mariano, Aguila Marcia Barbosa, Mandarim-de-Lacerda Carlos A
Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
Laboratory of Membrane Transport, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
Biochim Open. 2017 Feb 3;4:19-30. doi: 10.1016/j.biopen.2017.01.002. eCollection 2017 Jun.
Studies show that the continuous consumption of fructose can lead to nonalcoholic fatty liver disease (NAFLD) and steatohepatitis. We aimed to investigate the role of Metformin in an animal model of liver injury caused by fructose intake, focusing on the molecular markers of lipogenesis, beta-oxidation, and antioxidant defenses. Male three months old C57BL/6 mice were divided into control group (C) and fructose group (F, 47% fructose), maintained for ten weeks. After, the groups received Metformin or vehicle for a further eight weeks: control (C), control + Metformin (CM), fructose (F), and fructose + Metformin (FM). Fructose resulted in hepatic steatosis, insulin resistance and lower insulin sensitivity in association with higher mRNA levels of proteins linked with lipogenesis and increased lipid peroxidation. Fructose diminished mRNA expression of antioxidant enzymes, and of proteins responsible for mitochondrial biogenesis. Metformin reduced lipogenesis and increased the expression of proteins related to mitochondrial biogenesis, thereby increasing beta-oxidation and decreasing lipid peroxidation. Also, Metformin upregulated the expression and activity of antioxidant enzymes, providing a defense against increased reactive oxygen species generation. Therefore, a significant reduction in triglyceride accumulation in the liver, steatosis and lipid peroxidation was observed in the FM group. In conclusion, fructose increases lipogenesis, reduces the antioxidant defenses, and diminishes mitochondrial biogenesis. After an extended period of fructose intake, Metformin treatment, even in continuing the fructose intake, can reverse, at least partially, the liver injury and prevents NAFLD progression to more severe states.
研究表明,持续摄入果糖会导致非酒精性脂肪性肝病(NAFLD)和脂肪性肝炎。我们旨在研究二甲双胍在果糖摄入所致肝损伤动物模型中的作用,重点关注脂肪生成、β-氧化和抗氧化防御的分子标志物。将3个月大的雄性C57BL/6小鼠分为对照组(C)和果糖组(F,47%果糖),维持10周。之后,这些组再接受8周的二甲双胍或赋形剂处理:对照组(C)、对照组+二甲双胍(CM)、果糖组(F)和果糖+二甲双胍组(FM)。果糖导致肝脂肪变性、胰岛素抵抗和胰岛素敏感性降低,同时与脂肪生成相关蛋白质的mRNA水平升高以及脂质过氧化增加有关。果糖降低了抗氧化酶以及负责线粒体生物发生的蛋白质的mRNA表达。二甲双胍减少了脂肪生成,增加了与线粒体生物发生相关蛋白质的表达,从而增加了β-氧化并减少了脂质过氧化。此外,二甲双胍上调了抗氧化酶的表达和活性,为增加的活性氧生成提供防御。因此,在FM组中观察到肝脏中甘油三酯积累、脂肪变性和脂质过氧化显著减少。总之,果糖增加脂肪生成,降低抗氧化防御,并减少线粒体生物发生。在长期摄入果糖后,即使继续摄入果糖,二甲双胍治疗也可至少部分逆转肝损伤,并防止NAFLD进展至更严重状态。