Gugliucci Alejandro
Dept. of Research, College of Osteopathic Medicine, Touro University-California, Vallejo, CA, USA.
Med Hypotheses. 2016 Aug;93:87-92. doi: 10.1016/j.mehy.2016.05.026. Epub 2016 May 24.
Fructose may be a key contributor to the biochemical alterations which promote the metabolic syndrome (MetS), non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2DM): (a) its consumption in all forms but especially in liquid form has much increased alongside with incidence of MetS conditions; (b) it is metabolized almost exclusively in the liver, where it stimulates de novo lipogenesis to drive hepatic triglyceride (TG) synthesis which (c) contributes to hepatic insulin resistance and NAFLD (Lustig et al., 2015; Weiss et al., 2013; Lim et al., 2010; Schwarzet al., 2015; Stanhope et al., 2009, 2013) [1-6]. The specifics of fructose metabolism and its main location in the liver serve to explain many of the possible mechanisms involved. It also opens questions, as the consequences of large increases in fructose flux to the liver may wreak havoc with the regulation of metabolism and would produce two opposite effects (inhibition and activation of AMP dependent kinase-AMPK) that would tend to cancel each other. We posit that (1) surges of fructose in the portal vein lead to increased unregulated flux to trioses accompanied by unavoidable methylglyoxal (MG) production, (2) the new, sudden flux exerts carbonyl stress on the three arginines on the γ subunits AMP binding site of AMPK, irreversible blocking some of the enzyme molecules to allosteric modulation, (3) this explains why, even when fructose quick phosphorylation increases AMP and should therefore activate AMPK, the effects of fructose are compatible with inactivation of AMPK, which then solves the apparent metabolic paradox. We put forward the hypothesis that fructose loads, via the increase in MG flux worsens the fructose-driven metabolic disturbances that lead to unrestricted de novo lipogenesis, fatty liver and hepatic insulin resistance. It does so via the silencing of AMPK. Our hypothesis is testable and if proven correct will shed some further light on fructose metabolism in the liver. It will also open new roads in glycation research, as modulation of MG catabolism may be a way to dampen the damage. Research on this area may have important therapeutic potential, e.g., more momentum to find new and improved carbonyl quenchers, new insights on the action of metformin, more evidence for the role of GAPDH inactivation due to mitochondrial overload in diabetes complications. AMPK plays a central role in metabolism, and its function varies in different tissues. For that reason, synthetic activators will always stumble with unwanted or unpredictable effects. Preventing MG damage on the protein could be a safer therapeutic avenue.
果糖可能是促使代谢综合征(MetS)、非酒精性脂肪性肝病(NAFLD)和2型糖尿病(T2DM)发生生化改变的关键因素:(a)各种形式的果糖,尤其是液态果糖的摄入量,随着MetS相关疾病发病率的上升而大幅增加;(b)果糖几乎完全在肝脏中代谢,在肝脏中它刺激从头脂肪生成,从而驱动肝脏甘油三酯(TG)的合成,(c)这会导致肝脏胰岛素抵抗和NAFLD(卢斯蒂格等人,2015年;魏斯等人,2013年;林等人,2010年;施瓦茨等人,2015年;斯坦霍普等人,2009年、2013年)[1 - 6]。果糖代谢的具体情况及其在肝脏中的主要作用位点有助于解释其中涉及的许多可能机制。这也引发了一些问题,因为大量果糖涌入肝脏可能会严重扰乱代谢调节,并产生两种相反的效应(抑制和激活AMP依赖激酶 - AMPK),这两种效应往往会相互抵消。我们认为:(1)门静脉中果糖的激增会导致流向丙糖的通量不受控制地增加,并不可避免地产生甲基乙二醛(MG);(2)这种新的、突然增加的通量会对AMPK的γ亚基AMP结合位点上的三个精氨酸施加羰基应激,不可逆地阻断一些酶分子的变构调节;(3)这就解释了为什么即使果糖快速磷酸化会增加AMP,从而应该激活AMPK,但果糖的作用却与AMPK的失活相一致,进而解决了这一明显的代谢悖论。我们提出一个假说,即果糖负荷通过增加MG通量,加剧了果糖驱动的代谢紊乱,导致不受限制的从头脂肪生成、脂肪肝和肝脏胰岛素抵抗。它是通过使AMPK沉默来实现的。我们的假说具有可测试性,如果被证明是正确的,将进一步阐明肝脏中的果糖代谢。这也将为糖基化研究开辟新的道路,因为调节MG分解代谢可能是减轻损害的一种方法。该领域的研究可能具有重要的治疗潜力,例如,更有力地寻找新的和改进的羰基淬灭剂,对二甲双胍作用的新见解,更多关于糖尿病并发症中线粒体过载导致甘油醛 - 3 - 磷酸脱氢酶(GAPDH)失活作用的证据。AMPK在代谢中起核心作用,其功能在不同组织中有所不同。因此,合成激活剂总会带来不良或不可预测的影响。防止MG对蛋白质的损害可能是一条更安全的治疗途径。