Suppr超能文献

尿代谢物变化的研究及其在膀胱癌生物标志物发现中的应用。

Investigation of the urinary metabolic variations and the application in bladder cancer biomarker discovery.

机构信息

Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.

Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.

出版信息

Int J Cancer. 2018 Jul 15;143(2):408-418. doi: 10.1002/ijc.31323. Epub 2018 Mar 2.

Abstract

Urine metabolomics have been used to identify biomarkers for clinical diseases. However, inter-individual variations and effect factors need to be further evaluated. In our study, we explored the urine metabolome in a cohort of 203 health adults, 6 patients with benign bladder lesions, and 53 patients with bladder cancer (BCa) using liquid chromatography coupled with high resolution mass spectrometry. Inter-individual analysis of both healthy controls and BCa patients showed that the urine metabolome was relatively stable. Further analysis indicated that sex and age affect inter-individual variations in urine metabolome. Metabolic pathways such as tryptophan metabolism, the citrate cycle, and pantothenate and CoA biosynthesis were found to be related to sex and age. To eliminate age and sex interference, additional BCa urine metabolomic biomarkers were explored using age and sex-matched urine samples (Test group: 44 health adults vs. 33 patients with BCa). Metabolic profiling of urine could significantly differentiate the cases with cancer from the controls and high-grade from low-grade BCa. A metabolite panel consisting of trans-2-dodecenoylcarnitine, serinyl-valine, feruloyl-2-hydroxyputrescine, and 3-hydroxynonanoyl carnitine were discovered to have good predictive ability for BCa with an area under the curve (AUC) of 0.956 (cross validation: AUC = 0.924). A panel of indolylacryloylglycine, N -galacturonyl-L-lysine, and aspartyl-glutamate was used to establish a robust model for high- and low-grade BCa distinction with AUC of 0.937 (cross validation: AUC = 0.891). External sample (26 control vs. 20 BCa) validation verified the acceptable accuracy of these models for BCa detection. Our study showed that urinary metabolomics is a useful strategy for differential analysis and biomarker discovery.

摘要

尿液代谢组学已被用于鉴定临床疾病的生物标志物。然而,个体间的差异和影响因素需要进一步评估。在我们的研究中,我们使用液相色谱-高分辨质谱联用技术对 203 名健康成年人、6 名良性膀胱病变患者和 53 名膀胱癌(BCa)患者的尿液代谢组进行了研究。对健康对照组和 BCa 患者的个体间分析表明,尿液代谢组相对稳定。进一步的分析表明,性别和年龄影响尿液代谢组的个体间差异。代谢途径如色氨酸代谢、柠檬酸循环、泛酸和 CoA 生物合成与性别和年龄有关。为了消除年龄和性别干扰,我们使用年龄和性别匹配的尿液样本(Test 组:44 名健康成年人与 33 名 BCa 患者)探索了额外的 BCa 尿液代谢组生物标志物。尿液代谢组学分析可显著区分癌症病例和对照组以及高级别和低级别 BCa。发现由反式-2-十二烯酰肉碱、丝氨酰-缬氨酸、阿魏酰-2-羟腐胺和 3-羟基壬酰肉碱组成的代谢物谱对 BCa 具有良好的预测能力,曲线下面积(AUC)为 0.956(交叉验证:AUC=0.924)。一组吲哚基丙烯酰基甘氨酸、N-半乳糖酰-L-赖氨酸和天冬氨酸-谷氨酸被用于建立一个稳健的模型,用于区分高级别和低级别 BCa,AUC 为 0.937(交叉验证:AUC=0.891)。外部样本(26 名对照与 20 名 BCa)验证验证了这些模型对 BCa 检测的可接受准确性。我们的研究表明,尿液代谢组学是一种用于差异分析和生物标志物发现的有用策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验