Jimenez Samuel, Mordillo-Mateos Laura, Dileone Michele, Campolo Michela, Carrasco-Lopez Carmen, Moitinho-Ferreira Fabricia, Gallego-Izquierdo Tomas, Siebner Hartwig R, Valls-Solé Josep, Aguilar Juan, Oliviero Antonio
FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain.
Physiotherapy Department, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.
PLoS One. 2018 Feb 16;13(2):e0192471. doi: 10.1371/journal.pone.0192471. eCollection 2018.
Spinal plasticity is thought to contribute to sensorimotor recovery of limb function in several neurological disorders and can be experimentally induced in animals and humans using different stimulation protocols. In healthy individuals, electrical continuous Theta Burst Stimulation (TBS) of the median nerve has been shown to change spinal motoneuron excitability in the cervical spinal cord as indexed by a change in mean H-reflex amplitude in the flexor carpi radialis muscle. It is unknown whether continuous TBS of a peripheral nerve can also shift motoneuron excitability in the lower limb. In 26 healthy subjects, we examined the effects of electrical TBS given to the tibial nerve in the popliteal fossa on the excitability of lumbar spinal motoneurons as measured by H-reflex amplitude of the soleus muscle evoked by tibial nerve stimulation. Continuous TBS was given at 110% of H-reflex threshold intensity and compared to non-patterned regular electrical stimulation at 15 Hz. To disclose any pain-induced effects, we also tested the effects of TBS at individual sensory threshold. Moreover, in a subgroup of subjects we evaluated paired-pulse inhibition of H-reflex. Continuous TBS at 110% of H-reflex threshold intensity induced a short-term reduction of H-reflex amplitude. The other stimulation conditions produced no after effects. Paired-pulse H-reflex inhibition was not modulated by continuous TBS or non-patterned repetitive stimulation at 15 Hz. An effect of pain on the results obtained was discarded, since non-patterned 15 Hz stimulation at 110% HT led to pain scores similar to those induced by EcTBS at 110% HT, but was not able to induce any modulation of the H reflex amplitude. Together, the results provide first time evidence that peripheral continuous TBS induces a short-lasting change in the excitability of spinal motoneurons in lower limb circuitries. Future studies need to investigate how the TBS protocol can be optimized to produce a larger and longer effect on spinal cord physiology and whether this might be a useful intervention in patients with excessive excitability of the spinal motorneurons.
脊髓可塑性被认为有助于多种神经系统疾病中肢体功能的感觉运动恢复,并且可以通过不同的刺激方案在动物和人类中进行实验诱导。在健康个体中,正中神经的电连续θ波爆发刺激(TBS)已被证明会改变颈脊髓中的脊髓运动神经元兴奋性,以桡侧腕屈肌平均H反射幅度的变化为指标。尚不清楚外周神经的连续TBS是否也能改变下肢运动神经元的兴奋性。在26名健康受试者中,我们研究了在腘窝处对胫神经进行电TBS对腰脊髓运动神经元兴奋性的影响,通过胫神经刺激诱发的比目鱼肌H反射幅度来测量。连续TBS以H反射阈值强度的110%给予,并与15Hz的非模式化常规电刺激进行比较。为了揭示任何疼痛诱导的影响,我们还测试了TBS在个体感觉阈值下的效果。此外,在一组受试者中,我们评估了H反射的配对脉冲抑制。以H反射阈值强度的110%进行连续TBS会导致H反射幅度短期降低。其他刺激条件没有产生后续影响。配对脉冲H反射抑制不受连续TBS或15Hz的非模式化重复刺激的调节。由于110%HT的非模式化15Hz刺激导致的疼痛评分与110%HT的电连续TBS诱导的疼痛评分相似,但无法诱导H反射幅度的任何调节,因此排除了疼痛对所得结果的影响。总之,这些结果首次证明外周连续TBS会引起下肢回路中脊髓运动神经元兴奋性的短暂变化。未来的研究需要调查如何优化TBS方案以对脊髓生理产生更大和更长时间的影响,以及这是否可能是对脊髓运动神经元兴奋性过高的患者有用的干预措施。