Suppr超能文献

临床医生实践与三种头部损伤决策规则在儿童中的准确性比较:一项前瞻性队列研究。

Accuracy of Clinician Practice Compared With Three Head Injury Decision Rules in Children: A Prospective Cohort Study.

机构信息

Emergency Department, Royal Children's Hospital, Melbourne, Parkville, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Parkville, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Parkville, Victoria, Australia.

Emergency Department, Royal Children's Hospital, Melbourne, Parkville, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Parkville, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Parkville, Victoria, Australia.

出版信息

Ann Emerg Med. 2018 Jun;71(6):703-710. doi: 10.1016/j.annemergmed.2018.01.015. Epub 2018 Feb 14.

Abstract

STUDY OBJECTIVE

Three clinical decision rules for head injuries in children (Pediatric Emergency Care Applied Research Network [PECARN], Canadian Assessment of Tomography for Childhood Head Injury [CATCH], and Children's Head Injury Algorithm for the Prediction of Important Clinical Events [CHALICE]) have been shown to have high performance accuracy. The utility of any of these in a particular setting depends on preexisting clinician accuracy. We therefore assess the accuracy of clinician practice in detecting clinically important traumatic brain injury.

METHODS

This was a planned secondary analysis of a prospective observational study of children younger than 18 years with head injuries at 10 Australian and New Zealand centers. In a cohort of children with mild head injuries (Glasgow Coma Scale score 13 to 15, presenting in <24 hours) we assessed physician accuracy (computed tomography [CT] obtained in emergency departments [EDs]) for the standardized outcome of clinically important traumatic brain injury and compared this with the accuracy of PECARN, CATCH, and CHALICE.

RESULTS

Of 20,137 children, 18,913 had a mild head injury. Of these patients, 1,579 (8.3%) received a CT scan during the ED visit, 160 (0.8%) had clinically important traumatic brain injury, and 24 (0.1%) underwent neurosurgery. Clinician identification of clinically important traumatic brain injury based on CT performed had a sensitivity of 158 of 160, or 98.8% (95% confidence interval [CI] 95.6% to 99.8%) and a specificity of 17,332 of 18,753, or 92.4% (95% CI 92.0% to 92.8%). Sensitivity of PECARN for children younger than 2 years was 42 of 42 (100.0%; 95% CI 91.6% to 100.0%), and for those 2 years and older, it was 117 of 118 (99.2%; 95% CI 95.4% to 100.0%); for CATCH (high/medium risk), it was 147 of 160 (91.9%; 95% CI 86.5% to 95.6%); and for CHALICE, 148 of 160 (92.5%; 95% CI 87.3% to 96.1%).

CONCLUSION

In a setting with high clinician accuracy and a low CT rate, PECARN, CATCH, or CHALICE clinical decision rules have limited potential to increase the accuracy of detecting clinically important traumatic brain injury and may increase the CT rate.

摘要

研究目的

三种儿童头部损伤的临床决策规则(儿科急诊护理应用研究网络[PECARN]、加拿大儿童头部 CT 评估用于创伤[CATCH]和儿童头部损伤预测重要临床事件的算法[CHALICE])已被证明具有较高的性能准确性。这些规则在特定环境中的应用取决于现有临床医生的准确性。因此,我们评估了临床医生在检测临床重要性颅脑损伤方面的准确性。

方法

这是对澳大利亚和新西兰 10 个中心的 18 岁以下头部受伤儿童进行的前瞻性观察性研究的计划二次分析。在一组轻度头部损伤(格拉斯哥昏迷量表评分为 13 至 15 分,在 24 小时内就诊)的患儿中,我们评估了医生对临床重要性颅脑损伤的标准结局的准确性(急诊科获得的计算机断层扫描[CT]),并将其与 PECARN、CATCH 和 CHALICE 的准确性进行了比较。

结果

在 20137 名儿童中,18913 名患有轻度头部损伤。在这些患者中,1579 名(8.3%)在急诊科就诊时接受了 CT 扫描,160 名(0.8%)有临床重要性颅脑损伤,24 名(0.1%)接受了神经外科手术。基于 CT 进行的临床医生对临床重要性颅脑损伤的识别,敏感性为 160 例中的 158 例,即 98.8%(95%置信区间[CI]为 95.6%至 99.8%),特异性为 18753 例中的 17332 例,即 92.4%(95% CI 为 92.0%至 92.8%)。对于年龄小于 2 岁的儿童,PECARN 的敏感性为 42 例(100.0%;95% CI 为 91.6%至 100.0%),而对于 2 岁及以上的儿童,敏感性为 117 例(99.2%;95% CI 为 95.4%至 100.0%);对于 CATCH(高/中风险),敏感性为 160 例中的 147 例(91.9%;95% CI 为 86.5%至 95.6%);而对于 CHALICE,敏感性为 160 例中的 148 例(92.5%;95% CI 为 87.3%至 96.1%)。

结论

在临床医生准确性较高、CT 率较低的情况下,PECARN、CATCH 或 CHALICE 临床决策规则可能无法显著提高检测临床重要性颅脑损伤的准确性,反而可能增加 CT 率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验