Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.
Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.
Environ Int. 2018 Apr;113:231-239. doi: 10.1016/j.envint.2018.02.005. Epub 2018 Feb 20.
We applied three statistical approaches for evaluating associations between prenatal urinary concentrations of a mixture of phthalate metabolites and birth weight.
We included 300 women who provided 732 urine samples during pregnancy and delivered a singleton infant. We measured urinary concentrations of metabolites of di(2-ethylhexyl)-phthalate, di-isobutyl-, di-n-butyl-, butylbenzyl-, and diethyl phthalates. We applied 1) linear regressions; 2) classification methods [principal component analysis (PCA) and structural equation models (SEM)]; and 3) Bayesian kernel machine regression (BKMR), to evaluate associations between phthalate metabolite mixtures and birth weight adjusting for potential confounders. Data were presented as mean differences (95% CI) in birth weight (grams) as each phthalate increased from the 10th to the 90th percentile.
When analyzing individual phthalate metabolites using linear regressions, each metabolite demonstrated a modest inverse association with birth weight [from -93 (-206, 21) to -49 (-164, 65)]. When simultaneously including all metabolites in a multivariable model, inflation of the estimates and standard errors were noted. PCA identified two principal components, both inversely associated with birth weight [-23 (-68, 22), -27 (-71, 17), respectively]. These inverse associations were confirmed when applying SEM. BKMR further identified that monoethyl and mono(2-ethylhexyl) phthalate and phthalate concentrations were linearly related to lower birth weight [-51(-164, 63) and -122 (-311, 67), respectively], and suggested no evidence of interaction between metabolites.
While none of the methods produced significant results, we demonstrated the potential issues arising using linear regression models in the context of correlated exposures. Among the other selected approaches, classification techniques identified common sources of exposures with implications for interventions, while BKMR further identified specific contributions of individual metabolites.
我们应用三种统计方法来评估产前尿液中邻苯二甲酸酯代谢物混合物与出生体重之间的关联。
我们纳入了 300 名在孕期提供了 732 份尿液样本并分娩出单胎婴儿的女性。我们测量了尿液中邻苯二甲酸二(2-乙基己基)酯、二异丁基、二正丁基、丁基苄基和二乙酯代谢物的浓度。我们应用了 1)线性回归;2)分类方法[主成分分析(PCA)和结构方程模型(SEM)];以及 3)贝叶斯核机器回归(BKMR),以在调整潜在混杂因素后评估邻苯二甲酸酯代谢物混合物与出生体重之间的关联。数据以每个邻苯二甲酸酯从第 10 百分位到第 90 百分位增加时出生体重(克)的平均差异(95%CI)表示。
当使用线性回归分析个别邻苯二甲酸酯代谢物时,每种代谢物与出生体重呈适度负相关[-93(-206,21)至-49(-164,65)]。当同时在多变量模型中包含所有代谢物时,估计值和标准误差会膨胀。PCA 确定了两个与出生体重呈负相关的主成分[-23(-68,22),-27(-71,17)]。当应用 SEM 时,这些负相关得到了证实。BKMR 进一步确定,单乙基和单(2-乙基己基)邻苯二甲酸酯以及邻苯二甲酸酯浓度与较低的出生体重呈线性相关[-51(-164,63)和-122(-311,67)],并且表明代谢物之间没有相互作用的证据。
虽然这些方法均未产生显著结果,但我们展示了在相关暴露背景下使用线性回归模型可能出现的问题。在其他选定的方法中,分类技术确定了具有干预意义的共同暴露源,而 BKMR 进一步确定了个别代谢物的具体贡献。