Suppr超能文献

生物信号反映协作工作中的配对动态:课堂环境中结对编程的 EDA 和 ECG 研究。

Biosignals reflect pair-dynamics in collaborative work: EDA and ECG study of pair-programming in a classroom environment.

机构信息

Finnish Institute of Occupational Health, Helsinki, Finland.

Cognitive Science, Department of Digital Humanities, University of Helsinki, Helsinki, Finland.

出版信息

Sci Rep. 2018 Feb 16;8(1):3138. doi: 10.1038/s41598-018-21518-3.

Abstract

Collaboration is a complex phenomenon, where intersubjective dynamics can greatly affect the productive outcome. Evaluation of collaboration is thus of great interest, and can potentially help achieve better outcomes and performance. However, quantitative measurement of collaboration is difficult, because much of the interaction occurs in the intersubjective space between collaborators. Manual observation and/or self-reports are subjective, laborious, and have a poor temporal resolution. The problem is compounded in natural settings where task-activity and response-compliance cannot be controlled. Physiological signals provide an objective mean to quantify intersubjective rapport (as synchrony), but require novel methods to support broad deployment outside the lab. We studied 28 student dyads during a self-directed classroom pair-programming exercise. Sympathetic and parasympathetic nervous system activation was measured during task performance using electrodermal activity and electrocardiography. Results suggest that (a) we can isolate cognitive processes (mental workload) from confounding environmental effects, and (b) electrodermal signals show role-specific but correlated affective response profiles. We demonstrate the potential for social physiological compliance to quantify pair-work in natural settings, with no experimental manipulation of participants required. Our objective approach has a high temporal resolution, is scalable, non-intrusive, and robust.

摘要

协作是一种复杂的现象,其中主体间的动态会极大地影响生产结果。因此,协作的评估具有很大的意义,并且可能有助于实现更好的结果和绩效。然而,协作的定量测量是困难的,因为大部分交互都发生在协作参与者之间的主体间空间中。手动观察和/或自我报告是主观的、费力的,并且时间分辨率较差。在自然环境中,任务活动和响应合规性无法控制,问题更加复杂。生理信号提供了一种客观的方法来量化主体间的融洽关系(即同步性),但需要新的方法来支持在实验室之外广泛部署。我们在一个自我指导的课堂结对编程练习中研究了 28 对学生。在任务执行过程中,使用皮肤电活动和心电图测量交感和副交感神经系统的激活。结果表明:(a)我们可以将认知过程(心理工作量)与混杂的环境影响隔离开来,以及(b)皮肤电信号显示出角色特异性但相关的情感反应特征。我们展示了社交生理合规性在自然环境中量化结对工作的潜力,而无需对参与者进行任何实验操作。我们的客观方法具有高时间分辨率、可扩展、非侵入性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2144/5816605/3bed8b7e6ec9/41598_2018_21518_Fig1_HTML.jpg

相似文献

2
Cognitive Collaboration Found in Cardiac Physiology: Study in Classroom Environment.
PLoS One. 2016 Jul 14;11(7):e0159178. doi: 10.1371/journal.pone.0159178. eCollection 2016.
4
The psychophysiological mechanisms of real-world time experience.
Sci Rep. 2022 Jul 28;12(1):12890. doi: 10.1038/s41598-022-16198-z.
7
Autonomic changes following generalized tonic clonic seizures: An analysis of adult and pediatric patients with epilepsy.
Epilepsy Res. 2015 Sep;115:113-8. doi: 10.1016/j.eplepsyres.2015.06.005. Epub 2015 Jun 14.
8
Collaborative Learning Quality Classification Through Physiological Synchrony Recorded by Wearable Biosensors.
Front Psychol. 2021 Apr 29;12:674369. doi: 10.3389/fpsyg.2021.674369. eCollection 2021.
9
Validity of Commonly Used Heart Rate Variability Markers of Autonomic Nervous System Function.
Neuropsychobiology. 2019;78(1):14-26. doi: 10.1159/000495519. Epub 2019 Feb 5.

引用本文的文献

4
Interpersonal Physiological Synchrony for Detecting Moments of Connection in Persons With Dementia: A Pilot Study.
Front Psychol. 2021 Dec 13;12:749710. doi: 10.3389/fpsyg.2021.749710. eCollection 2021.
5
Detecting Emotions through Electrodermal Activity in Learning Contexts: A Systematic Review.
Sensors (Basel). 2021 Nov 26;21(23):7869. doi: 10.3390/s21237869.
6
Conversational Task Increases Heart Rate Variability of Individuals Susceptible to Perceived Social Isolation.
Int J Environ Res Public Health. 2021 Sep 18;18(18):9858. doi: 10.3390/ijerph18189858.
8
Collaborative Learning Quality Classification Through Physiological Synchrony Recorded by Wearable Biosensors.
Front Psychol. 2021 Apr 29;12:674369. doi: 10.3389/fpsyg.2021.674369. eCollection 2021.
9
Multimodal Data Fusion in Learning Analytics: A Systematic Review.
Sensors (Basel). 2020 Nov 30;20(23):6856. doi: 10.3390/s20236856.
10
Multivariate model for cooperation: bridging social physiological compliance and hyperscanning.
Soc Cogn Affect Neurosci. 2021 Jan 18;16(1-2):193-209. doi: 10.1093/scan/nsaa119.

本文引用的文献

1
Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom.
Curr Biol. 2017 May 8;27(9):1375-1380. doi: 10.1016/j.cub.2017.04.002. Epub 2017 Apr 27.
2
The Multimodal Assessment of Adult Attachment Security: Developing the Biometric Attachment Test.
J Med Internet Res. 2017 Apr 6;19(4):e100. doi: 10.2196/jmir.6898.
3
Recognition of emotions using multimodal physiological signals and an ensemble deep learning model.
Comput Methods Programs Biomed. 2017 Mar;140:93-110. doi: 10.1016/j.cmpb.2016.12.005. Epub 2016 Dec 15.
4
Time-Series Analysis of Embodied Interaction: Movement Variability and Complexity Matching As Dyadic Properties.
Front Psychol. 2016 Dec 12;7:1940. doi: 10.3389/fpsyg.2016.01940. eCollection 2016.
5
Cognitive Collaboration Found in Cardiac Physiology: Study in Classroom Environment.
PLoS One. 2016 Jul 14;11(7):e0159178. doi: 10.1371/journal.pone.0159178. eCollection 2016.
7
Psychophysiological responses to auditory change.
Psychophysiology. 2016 Jun;53(6):891-904. doi: 10.1111/psyp.12633. Epub 2016 Feb 29.
8
Interpersonal Autonomic Physiology: A Systematic Review of the Literature.
Pers Soc Psychol Rev. 2017 May;21(2):99-141. doi: 10.1177/1088868316628405. Epub 2016 Feb 26.
9
Physiological evidence of interpersonal dynamics in a cooperative production task.
Physiol Behav. 2016 Mar 15;156:24-34. doi: 10.1016/j.physbeh.2016.01.004. Epub 2016 Jan 7.
10
Feasibility of an electrodermal activity ring prototype as a research tool.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6433-6. doi: 10.1109/EMBC.2015.7319865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验