Suppr超能文献

使用应用于疏水减法模型的定量结构-保留关系进行反相高效液相色谱中的保留预测。

Retention prediction in reversed phase high performance liquid chromatography using quantitative structure-retention relationships applied to the Hydrophobic Subtraction Model.

作者信息

Wen Yabin, Talebi Mohammad, Amos Ruth I J, Szucs Roman, Dolan John W, Pohl Christopher A, Haddad Paul R

机构信息

Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001, Australia.

Pfizer Global Research and Development, Sandwich, UK.

出版信息

J Chromatogr A. 2018 Mar 16;1541:1-11. doi: 10.1016/j.chroma.2018.01.053. Epub 2018 Feb 8.

Abstract

Quantitative Structure-Retention Relationships (QSRR) methodology combined with the Hydrophobic Subtraction Model (HSM) have been utilized to accurately predict retention times for a selection of analytes on several different reversed phase liquid chromatography (RPLC) columns. This approach is designed to facilitate early prediction of co-elution of analytes, for example in pharmaceutical drug discovery applications where it is advantageous to predict whether impurities might be co-eluted with the active drug component. The QSRR model utilized VolSurf+ descriptors and a Partial Least Squares regression combined with a Genetic Algorithm (GA-PLS) to predict the solute coefficients in the HSM. It was found that only the hydrophobicity (η'H) term in the HSM was required to give the accuracy necessary to predict potential co-elution of analytes. Global QSRR models derived from all 148 compounds in the dataset were compared to QSRR models derived using a range of local modelling techniques based on clustering of compounds in the dataset by the structural similarity of compounds (as represented by the Tanimoto similarity index), physico-chemical similarity of compounds (represented by log D), the neutral, acidic, or basic nature of the compound, and the second dominant interaction between analyte and stationary phase after hydrophobicity. The global model showed reasonable prediction accuracy for retention time with errors of 30 s and less for up to 50% of modeled compounds. The local models for Tanimoto, nature of the compound and second dominant interaction approaches all exhibited prediction errors less than 30 s in retention time for nearly 70% of compounds for which models could be derived. Predicted retention times of five representative compounds on nine reversed-phase columns were compared with known experimental retention data for these columns and this comparison showed that the accuracy of the proposed modelling approach is sufficient to reliably predict the retention times of analytes based only on their chemical structures.

摘要

定量结构-保留关系(QSRR)方法与疏水减法模型(HSM)相结合,已被用于准确预测多种不同反相液相色谱(RPLC)柱上一系列分析物的保留时间。该方法旨在便于早期预测分析物的共洗脱情况,例如在药物发现应用中,预测杂质是否可能与活性药物成分共洗脱是很有优势的。QSRR模型利用VolSurf+描述符以及结合遗传算法的偏最小二乘回归(GA-PLS)来预测HSM中的溶质系数。研究发现,仅需HSM中的疏水性(η'H)项就能提供预测分析物潜在共洗脱所需的准确度。将数据集中所有148种化合物得出的全局QSRR模型,与基于数据集中化合物的结构相似性(由Tanimoto相似性指数表示)、化合物的物理化学相似性(由log D表示)、化合物的中性、酸性或碱性性质以及疏水性之后分析物与固定相之间的第二主导相互作用等一系列局部建模技术得出的QSRR模型进行了比较。全局模型对保留时间显示出合理的预测准确度,高达50%的建模化合物的误差在30秒及以下。Tanimoto、化合物性质和第二主导相互作用方法的局部模型,对于近70%能够得出模型的化合物,其保留时间的预测误差均小于30秒。将9种反相柱上5种代表性化合物的预测保留时间与这些柱的已知实验保留数据进行了比较,结果表明,所提出的建模方法的准确度足以仅根据分析物的化学结构可靠地预测其保留时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验