Suppr超能文献

通过压缩屈曲组装的具有可调振动动力学的三维多尺度、多稳态和几何多样的微结构。

Three-Dimensional Multiscale, Multistable, and Geometrically Diverse Microstructures with Tunable Vibrational Dynamics Assembled by Compressive Buckling.

作者信息

Ning Xin, Wang Heling, Yu Xinge, Soares Julio A N T, Yan Zheng, Nan Kewang, Velarde Gabriel, Xue Yeguang, Sun Rujie, Dong Qiyi, Luan Haiwen, Lee Chan Mi, Chempakasseril Aditya, Han Mengdi, Wang Yiqi, Li Luming, Huang Yonggang, Zhang Yihui, Rogers John

机构信息

Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (USA).

Departments of Civil and Environmental Engineering, and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208 (USA).

出版信息

Adv Funct Mater. 2017 Apr 11;27(14). doi: 10.1002/adfm.201605914. Epub 2017 Mar 3.

Abstract

Microelectromechanical systems remain an area of significant interest in fundamental and applied research due to their wide ranging applications. Most device designs, however, are largely two-dimensional and constrained to only a few simple geometries. Achieving tunable resonant frequencies or broad operational bandwidths requires complex components and/or fabrication processes. The work presented here reports unusual classes of three-dimensional (3D) micromechanical systems in the form of vibratory platforms assembled by controlled compressive buckling. Such 3D structures can be fabricated across a broad range of length scales and from various materials, including soft polymers, monocrystalline silicon, and their composites, resulting in a wide scope of achievable resonant frequencies and mechanical behaviors. Platforms designed with multistable mechanical responses and vibrationally de-coupled constituent elements offer improved bandwidth and frequency tunability. Furthermore, the resonant frequencies can be controlled through deformations of an underlying elastomeric substrate. Systematic experimental and computational studies include structures with diverse geometries, ranging from tables, cages, rings, ring-crosses, ring-disks, two-floor ribbons, flowers, umbrellas, triple-cantilever platforms, and asymmetric circular helices, to multilayer constructions. These ideas form the foundations for engineering designs that complement those supported by conventional, microelectromechanical systems, with capabilities that could be useful in systems for biosensing, energy harvesting and others.

摘要

由于微机电系统(MEMS)具有广泛的应用,它们在基础研究和应用研究领域仍然备受关注。然而,大多数器件设计在很大程度上是二维的,并且局限于少数几种简单的几何形状。实现可调谐的共振频率或宽的工作带宽需要复杂的组件和/或制造工艺。本文所展示的工作报道了一类不同寻常的三维(3D)微机械系统,其形式为通过可控压缩屈曲组装而成的振动平台。这种3D结构可以在广泛的长度尺度上由各种材料制造而成,包括软聚合物、单晶硅及其复合材料,从而产生了广泛的可实现共振频率和机械行为。设计具有多稳态机械响应和振动解耦组成元件的平台可提供更高的带宽和频率可调性。此外,共振频率可以通过底层弹性体基板的变形来控制。系统的实验和计算研究包括具有各种几何形状的结构,从桌子、笼子、环、环十字、环盘、双层带、花、伞、三悬臂平台和不对称圆形螺旋到多层结构。这些想法为工程设计奠定了基础,可补充传统微机电系统所支持的设计,并具有在生物传感、能量收集等系统中可能有用的功能。

相似文献

2
Vibration of Mechanically-Assembled 3D Microstructures Formed by Compressive Buckling.
J Mech Phys Solids. 2018 Mar;112:187-208. doi: 10.1016/j.jmps.2017.12.002. Epub 2017 Dec 8.
3
Mechanically active materials in three-dimensional mesostructures.
Sci Adv. 2018 Sep 14;4(9):eaat8313. doi: 10.1126/sciadv.aat8313. eCollection 2018 Sep.
5
Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation.
Adv Funct Mater. 2016 May 3;26(17):2909-2918. doi: 10.1002/adfm.201505132. Epub 2016 Feb 24.
6
Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process.
ACS Nano. 2018 May 22;12(5):4164-4171. doi: 10.1021/acsnano.8b00180. Epub 2018 Apr 17.
7
Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials.
Adv Funct Mater. 2016 Apr 25;26(16):2629-2639. doi: 10.1002/adfm.201504901. Epub 2016 Feb 25.
8
Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics.
Nat Mater. 2018 Mar;17(3):268-276. doi: 10.1038/s41563-017-0011-3. Epub 2018 Jan 29.
10
Complex 3D microfluidic architectures formed by mechanically guided compressive buckling.
Sci Adv. 2021 Oct 22;7(43):eabj3686. doi: 10.1126/sciadv.abj3686. Epub 2021 Oct 20.

引用本文的文献

1
Evaluation of a wearable fabric-based sensor for accurate sodium determination in sweat during exercise.
Eur J Appl Physiol. 2024 May;124(5):1347-1353. doi: 10.1007/s00421-023-05364-4. Epub 2023 Nov 29.
3
Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15368-15377. doi: 10.1073/pnas.1907732116. Epub 2019 Jul 17.
4
Integration of biological systems with electronic-mechanical assemblies.
Acta Biomater. 2019 Sep 1;95:91-111. doi: 10.1016/j.actbio.2019.04.032. Epub 2019 Apr 17.
5
Mechanically active materials in three-dimensional mesostructures.
Sci Adv. 2018 Sep 14;4(9):eaat8313. doi: 10.1126/sciadv.aat8313. eCollection 2018 Sep.
6
Vibration of Mechanically-Assembled 3D Microstructures Formed by Compressive Buckling.
J Mech Phys Solids. 2018 Mar;112:187-208. doi: 10.1016/j.jmps.2017.12.002. Epub 2017 Dec 8.
7
Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process.
ACS Nano. 2018 May 22;12(5):4164-4171. doi: 10.1021/acsnano.8b00180. Epub 2018 Apr 17.
8
Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots.
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9455-E9464. doi: 10.1073/pnas.1713805114. Epub 2017 Oct 25.

本文引用的文献

1
Micro and Nano-Scale Technologies for Cell Mechanics.
Nanobiomedicine (Rij). 2014 Jan 1;1:5. doi: 10.5772/59379. eCollection 2014 Jan-Dec.
2
Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing.
Nat Mater. 2017 Mar;16(3):303-308. doi: 10.1038/nmat4782. Epub 2016 Oct 24.
3
Stable propagation of mechanical signals in soft media using stored elastic energy.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9722-7. doi: 10.1073/pnas.1604838113. Epub 2016 Aug 12.
4
Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation.
Adv Funct Mater. 2016 May 3;26(17):2909-2918. doi: 10.1002/adfm.201505132. Epub 2016 Feb 24.
5
Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials.
Adv Funct Mater. 2016 Apr 25;26(16):2629-2639. doi: 10.1002/adfm.201504901. Epub 2016 Feb 25.
6
Origami tubes with reconfigurable polygonal cross-sections.
Proc Math Phys Eng Sci. 2016 Jan;472(2185):20150607. doi: 10.1098/rspa.2015.0607.
7
Harnessing Deformation to Switch On and Off the Propagation of Sound.
Adv Mater. 2016 Feb 24;28(8):1631-5. doi: 10.1002/adma.201504469. Epub 2015 Dec 14.
8
Tunable micro- and nanomechanical resonators.
Sensors (Basel). 2015 Oct 16;15(10):26478-566. doi: 10.3390/s151026478.
9
Buckling of Elastomeric Beams Enables Actuation of Soft Machines.
Adv Mater. 2015 Nov 4;27(41):6323-7. doi: 10.1002/adma.201503188. Epub 2015 Sep 21.
10
A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11757-64. doi: 10.1073/pnas.1515602112. Epub 2015 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验