Suppr超能文献

三维硅电子系统通过压缩屈曲工艺制造。

Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process.

机构信息

Departments of Materials Science and Engineering, Biomedical Engineering, Chemistry, Neurological Surgery, Mechanical Engineering, Electrical Engineering and Computer Science, Simpson Querrey Institute & Feinberg Medical School, Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States.

Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.

出版信息

ACS Nano. 2018 May 22;12(5):4164-4171. doi: 10.1021/acsnano.8b00180. Epub 2018 Apr 17.

Abstract

Recently developed approaches in deterministic assembly allow for controlled, geometric transformation of two-dimensional structures into complex, engineered three-dimensional layouts. Attractive features include applicability to wide ranging layout designs and dimensions along with the capacity to integrate planar thin film materials and device layouts. The work reported here establishes further capabilities for directly embedding high-performance electronic devices into the resultant 3D constructs based on silicon nanomembranes (Si NMs) as the active materials in custom devices or microscale components released from commercial wafer sources. Systematic experimental studies and theoretical analysis illustrate the key ideas through varied 3D architectures, from interconnected bridges and coils to extended chiral structures, each of which embed n-channel Si NM MOSFETs (nMOS), Si NM diodes, and p-channel silicon MOSFETs (pMOS). Examples in stretchable/deformable systems highlight additional features of these platforms. These strategies are immediately applicable to other wide-ranging classes of materials and device technologies that can be rendered in two-dimensional layouts, from systems for energy storage, to photovoltaics, optoelectronics, and others.

摘要

最近发展的确定性组装方法允许将二维结构可控地、几何地转化为复杂的工程三维结构。吸引人的特点包括适用于广泛的布局设计和尺寸,以及集成平面薄膜材料和器件布局的能力。这里报道的工作进一步建立了能力,可基于硅纳米膜 (Si NM) 将高性能电子器件直接嵌入到所得的 3D 结构中,Si NM 是定制器件或从商业晶圆源释放的微尺度组件中的有源材料。系统的实验研究和理论分析通过各种 3D 结构说明了关键思想,包括互连的桥梁和线圈到扩展的手性结构,每个结构都嵌入了 n 沟道硅 NM MOSFET(nMOS)、硅 NM 二极管和 p 沟道硅 MOSFET(pMOS)。在可拉伸/可变形系统中的例子突出了这些平台的其他特点。这些策略可立即应用于其他广泛的材料和器件技术类别,这些技术可以在二维布局中呈现,从储能系统到光伏、光电和其他系统。

相似文献

2
Advanced Materials and Devices for Bioresorbable Electronics.可吸收电子学用的先进材料与器件。
Acc Chem Res. 2018 May 15;51(5):988-998. doi: 10.1021/acs.accounts.7b00548. Epub 2018 Apr 17.
9
Schottky contact on ultra-thin silicon nanomembranes under light illumination.光照下超薄硅纳米膜上的肖特基接触
Nanotechnology. 2014 Dec 5;25(48):485201. doi: 10.1088/0957-4484/25/48/485201. Epub 2014 Nov 7.
10
Electrically pumped silicon waveguide light sources.电泵浦硅波导光源。
Opt Express. 2011 Nov 21;19(24):24569-76. doi: 10.1364/OE.19.024569.

引用本文的文献

2
Mechanically-Guided 3D Assembly for Architected Flexible Electronics.用于结构化柔性电子器件的机械引导三维组装
Chem Rev. 2023 Sep 27;123(18):11137-11189. doi: 10.1021/acs.chemrev.3c00335. Epub 2023 Sep 7.
8
Integration of biological systems with electronic-mechanical assemblies.生物系统与电子机械组件的集成。
Acta Biomater. 2019 Sep 1;95:91-111. doi: 10.1016/j.actbio.2019.04.032. Epub 2019 Apr 17.

本文引用的文献

4
Hybrid 3D Printing of Soft Electronics.软电子产品的混合三维打印。
Adv Mater. 2017 Oct;29(40). doi: 10.1002/adma.201703817. Epub 2017 Sep 6.
5
Materials and processing approaches for foundry-compatible transient electronics.铸造兼容瞬态电子学的材料和加工方法。
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5522-E5529. doi: 10.1073/pnas.1707849114. Epub 2017 Jun 26.
6
Self-assembled micro-organogels for 3D printing silicone structures.自组装微器官凝胶用于 3D 打印硅酮结构。
Sci Adv. 2017 May 10;3(5):e1602800. doi: 10.1126/sciadv.1602800. eCollection 2017 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验