Suppr超能文献

三维介观结构作为高温生长模板、电子细胞支架和自推进微机器人。

Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots.

机构信息

Department of Chemical Engineering, University of Missouri, Columbia, MO 65211.

Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211.

出版信息

Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9455-E9464. doi: 10.1073/pnas.1713805114. Epub 2017 Oct 25.

Abstract

Recent work demonstrates that processes of stress release in prestrained elastomeric substrates can guide the assembly of sophisticated 3D micro/nanostructures in advanced materials. Reported application examples include soft electronic components, tunable electromagnetic and optical devices, vibrational metrology platforms, and other unusual technologies, each enabled by uniquely engineered 3D architectures. A significant disadvantage of these systems is that the elastomeric substrates, while essential to the assembly process, can impose significant engineering constraints in terms of operating temperatures and levels of dimensional stability; they also prevent the realization of 3D structures in freestanding forms. Here, we introduce concepts in interfacial photopolymerization, nonlinear mechanics, and physical transfer that bypass these limitations. The results enable 3D mesostructures in fully or partially freestanding forms, with additional capabilities in integration onto nearly any class of substrate, from planar, hard inorganic materials to textured, soft biological tissues, all via mechanisms quantitatively described by theoretical modeling. Illustrations of these ideas include their use in 3D structures as frameworks for templated growth of organized lamellae from AgCl-KCl eutectics and of atomic layers of WSe from vapor-phase precursors, as open-architecture electronic scaffolds for formation of dorsal root ganglion (DRG) neural networks, and as catalyst supports for propulsive systems in 3D microswimmers with geometrically controlled dynamics. Taken together, these methodologies establish a set of enabling options in 3D micro/nanomanufacturing that lie outside of the scope of existing alternatives.

摘要

最近的研究工作表明,预拉伸弹性体基底中应力释放的过程可以指导先进材料中复杂的 3D 微/纳结构的组装。报道的应用实例包括软电子元件、可调谐电磁和光学器件、振动计量平台以及其他不常见的技术,这些技术都得益于独特设计的 3D 架构。这些系统的一个显著缺点是,弹性体基底虽然对组装过程至关重要,但在操作温度和尺寸稳定性水平方面会带来重大的工程限制;它们还阻止了 3D 结构以自由形式的实现。在这里,我们引入了界面光聚合、非线性力学和物理传递的概念,这些概念绕过了这些限制。这些结果使 3D 介观结构能够以完全或部分自由形式存在,并具有额外的能力集成到几乎任何类型的基底上,从平面、硬无机材料到纹理化、软生物组织,所有这些都通过理论建模进行定量描述的机制。这些想法的说明包括它们在 3D 结构中的用途,例如作为从 AgCl-KCl 共晶模板生长有序层的框架,以及作为气相前体 WSe 原子层的框架,作为用于形成背根神经节 (DRG) 神经网络的开放式电子支架,以及作为具有几何控制动力学的 3D 微游泳者推进系统的催化剂载体。总之,这些方法为 3D 微/纳制造建立了一组可行的选择,这些选择超出了现有替代方案的范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/5692593/471105ed5626/pnas.1713805114fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验