Suppr超能文献

校准调整以解决因信息性抽样导致的死亡率分析偏差——瑞士一项与人口普查相关的调查分析

Calibration adjustments to address bias in mortality analyses due to informative sampling-a census-linked survey analysis in Switzerland.

作者信息

Moser André, Bopp Matthias, Zwahlen Marcel

机构信息

Department of Geriatrics, Inselspital, University Hospital, and University of Bern, Bern, Switzerland.

Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.

出版信息

PeerJ. 2018 Feb 13;6:e4376. doi: 10.7717/peerj.4376. eCollection 2018.

Abstract

BACKGROUND

Sampling bias, like survey participants' nonresponse, needs to be adequately addressed in the analysis of sampling designs. Often survey weights will be calibrated on specific covariates related to the probability of selection and nonresponse to get representative population estimates. However, such calibrated survey (CS) weights are usually constructed for cross-sectional results, but not for longitudinal analyses. For example, when the outcome of interest is time to death, and sampling selection is related to time to death and censoring, sampling is informative. Then, unweighted or CS weighted inferential statistical analyses may be biased. In 2010, Switzerland changed from a decennial full enumeration census to a yearly registry-based (i.e., data from harmonised community registries) and a survey-based census system. In the present study, we investigated the potential bias due to informative sampling when time to death is the outcome of interest, using data from the new Swiss census system.

METHODS

We analysed more than 6.5 million individuals aged 15 years or older from registry-based census data from years 2010 to 2013, linked with mortality records up to end of 2014. Out of this population, a target sample of 3.5% was sampled from the Swiss Federal Statistical Office (SFSO) in a stratified yearly micro census. The SFSO calculated CS weights to enable representative population estimates from the micro census. We additionally constructed inverse probability (IP) weights, where we used survival information in addition to known sampling covariates. We compared CS and IP weighted mortality rates (MR) and life expectancy (LE) with estimates from the underlying population. Additionally, we performed a simulation study under different sampling and nonresponse scenarios.

RESULTS

We found that individuals who died in 2011, had a 0.67 (95% CI [0.64-0.70]) times lower odds of participating in the 2010 micro census, using a multivariable logistic regression model with covariates age, gender, nationality, civil status, region and survival information. IP weighted MR were comparable to estimates from the total population, whereas CS weighted MR underestimated the population MR in general. The IP weighted LE estimates at age 30 years for men were 50.9 years (95% CI [50.2-51.6] years), whereas the CS weighted overestimated LE by 2.5 years. Our results from the simulation study confirmed that IP weighted models are comparable to population estimates.

CONCLUSION

Mortality analyses based on the new Swiss survey-based census system may be biased, because of informative sampling. We conclude that mortality analyses based on census-linked survey data have to be carefully conducted, and if possible, validated by registry information to allow for unbiased interpretation and generalisation.

摘要

背景

抽样偏差,如调查参与者无应答情况,在抽样设计分析中需要得到充分处理。通常,调查权重会根据与选择概率和无应答相关的特定协变量进行校准,以获得具有代表性的总体估计值。然而,这种校准后的调查(CS)权重通常是为横断面结果构建的,而非用于纵向分析。例如,当感兴趣的结局是死亡时间,且抽样选择与死亡时间和删失相关时,抽样具有信息性。那么,未加权或CS加权的推断统计分析可能会产生偏差。2010年,瑞士从每十年一次的全面人口普查转变为基于年度登记(即来自统一社区登记处的数据)和基于调查的普查系统。在本研究中,我们使用瑞士新普查系统的数据,调查了以死亡时间为感兴趣结局时因信息性抽样导致的潜在偏差。

方法

我们分析了2010年至2013年基于登记处的普查数据中超过650万年龄在15岁及以上的个体,并与截至2014年底的死亡记录相链接。在这一人群中,从瑞士联邦统计局(SFSO)在分层年度微观普查中抽取了3.5%的目标样本。SFSO计算了CS权重,以便从微观普查中获得具有代表性的总体估计值。我们还构建了逆概率(IP)权重,除了已知的抽样协变量外,还使用了生存信息。我们将CS加权和IP加权的死亡率(MR)及预期寿命(LE)与基础人群的估计值进行了比较。此外,我们在不同的抽样和无应答情况下进行了模拟研究。

结果

我们发现,使用包含年龄、性别、国籍、婚姻状况、地区和生存信息等协变量的多变量逻辑回归模型,2011年死亡的个体参与2010年微观普查的几率低0.67(95%CI[0.64 - 0.70])倍。IP加权的MR与总体人群的估计值相当,而CS加权的MR总体上低估了人群MR。30岁男性的IP加权LE估计值为50.9岁(95%CI[50.2 - 51.6]岁),而CS加权高估LE达2.5岁。我们模拟研究的结果证实,IP加权模型与总体估计值相当。

结论

基于瑞士新的基于调查的普查系统的死亡率分析可能存在偏差,因为存在信息性抽样。我们得出结论,基于与普查相关的调查数据进行的死亡率分析必须谨慎进行,并且如果可能的话,通过登记信息进行验证,以便进行无偏的解释和推广。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf9e/5815334/f72e5f44b946/peerj-06-4376-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验