Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States.
Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States.
J Am Chem Soc. 2018 Mar 21;140(11):4079-4084. doi: 10.1021/jacs.8b00015. Epub 2018 Mar 9.
Tandem dye-sensitized photoelectrosynthesis cells are promising architectures for the production of solar fuels and commodity chemicals. A key bottleneck in the development of these architectures is the low efficiency of the photocathodes, leading to small current densities. Herein, we report a new design principle for highly active photocathodes that relies on the outer-sphere reduction of a substrate from the dye, generating an unstable radical that proceeds to the desired product. We show that the direct reduction of dioxygen from dye-sensitized nickel oxide (NiO) leads to the production of HO. In the presence of oxygen and visible light, NiO photocathodes sensitized with commercially available porphyrin, coumarin, and ruthenium dyes exhibit large photocurrents (up to 400 μA/cm) near the thermodynamic potential for O/HO in near-neutral water. Bulk photoelectrolysis of porphyrin-sensitized NiO over 24 h results in millimolar concentrations of HO with essentially 100% faradaic efficiency. To our knowledge, these are among the most active NiO photocathodes reported for multiproton/multielectron transformations. The photoelectrosynthesis proceeds by initial formation of superoxide, which disproportionates to HO. This disproportionation-driven charge separation circumvents the inherent challenges in separating electron-hole pairs for photocathodes tethered to inner sphere electrocatalysts and enables new applications for photoelectrosynthesis cells.
串联染料敏化光电合成电池是生产太阳能燃料和商品化学品的有前途的架构。这些架构发展的一个关键瓶颈是光电阴极的效率低,导致电流密度小。在此,我们报告了一种新的设计原理,用于高效的光电阴极,该原理依赖于从染料中进行的基质的外球还原,产生不稳定的自由基,然后进行所需的产物。我们表明,直接从染料敏化氧化镍(NiO)还原氧气会导致产生 HO。在氧气和可见光的存在下,用市售卟啉、香豆素和钌染料敏化的 NiO 光电阴极在近中性水中接近 O/HO 的热力学电势下表现出大的光电流(高达 400 μA/cm)。卟啉敏化 NiO 的体相光电电解在 24 小时内导致 HO 的毫摩尔浓度,基本上具有 100%的法拉第效率。据我们所知,这些是报道的用于多质子/多电子转化的最活跃的 NiO 光电阴极之一。光电合成过程通过超氧化物的初始形成进行,然后超氧化物歧化生成 HO。这种由歧化驱动的电荷分离绕过了与内球电催化剂连接的光电阴极中分离电子-空穴对的固有挑战,并为光电合成电池开辟了新的应用。