Cheng Fangwen, Pavliuk Olha, Hardt Steffen, Hunt Leigh Anna, Cai Bin, Kubart Tomas, Hammarström Leif, Plumeré Nicolas, Berggren Gustav, Tian Haining
Department of Chemistry─Ångström laboratory, Physical Chemistry, Uppsala University, Box 521, 75120, Uppsala, Sweden.
Department of Chemistry─Ångström laboratory, Molecular Biomimetics, Uppsala University, Box 523, 75120, Uppsala, Sweden.
Nat Commun. 2024 Apr 13;15(1):3202. doi: 10.1038/s41467-024-47517-9.
Dye-sensitized photoelectrodes consisting of photosensitizers and molecular catalysts with tunable structures and adjustable energy levels are attractive for low-cost and eco-friendly solar-assisted synthesis of energy rich products. Despite these advantages, dye-sensitized NiO photocathodes suffer from severe electron-hole recombination and facile molecule detachment, limiting photocurrent and stability in photoelectrochemical water-splitting devices. In this work, we develop an efficient and robust biohybrid dye-sensitized NiO photocathode, in which the intermolecular charge transfer is enhanced by a redox polymer. Owing to efficient assisted electron transfer from the dye to the catalyst, the biohybrid NiO photocathode showed a satisfactory photocurrent of 141±17 μA·cm at neutral pH at 0 V versus reversible hydrogen electrode and a stable continuous output within 5 h. This photocathode is capable of driving overall water splitting in combination with a bismuth vanadate photoanode, showing distinguished solar-to-hydrogen efficiency among all reported water-splitting devices based on dye-sensitized photocathodes. These findings demonstrate the opportunity of building green biohybrid systems for artificial synthesis of solar fuels.
由具有可调结构和可调节能级的光敏剂和分子催化剂组成的染料敏化光电极,对于低成本且环保的太阳能辅助合成富含能量的产品具有吸引力。尽管有这些优点,但染料敏化氧化镍光阴极存在严重的电子 - 空穴复合和分子易脱离的问题,限制了光电化学水分解装置中的光电流和稳定性。在这项工作中,我们开发了一种高效且坚固的生物杂交染料敏化氧化镍光阴极,其中氧化还原聚合物增强了分子间电荷转移。由于从染料到催化剂的高效辅助电子转移,该生物杂交氧化镍光阴极在相对于可逆氢电极0 V的中性pH条件下显示出令人满意的141±17 μA·cm的光电流,并在5小时内实现稳定的连续输出。这种光阴极能够与钒酸铋光阳极结合驱动整体水分解,在所有报道的基于染料敏化光阴极的水分解装置中表现出卓越的太阳能到氢能效率。这些发现证明了构建用于太阳能燃料人工合成的绿色生物杂交系统的机会。