Suppr超能文献

走向光合作用逆行控制的综合理解

Toward an Integrated Understanding of Retrograde Control of Photosynthesis.

机构信息

Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany.

出版信息

Antioxid Redox Signal. 2019 Mar 20;30(9):1186-1205. doi: 10.1089/ars.2018.7519. Epub 2018 Apr 5.

Abstract

SIGNIFICANCE

Photosynthesis takes place in the chloroplast of eukaryotes, which occupies a large portion of the photosynthetic cell. The chloroplast function and integrity depend on intensive material and signal exchange between all genetic compartments and conditionally secure efficient photosynthesis and high fitness. Recent Advances: During the last two decades, the concept of mutual control of plastid performance by extraplastidic anterograde signals acting on the chloroplast and the feedback from the chloroplast to the extraplastidic space by retrograde signals has been profoundly revised and expanded. It has become clear that a complex set of diverse signals is released from the chloroplast and exceeds the historically proposed small number of information signals. Thus, it is also recognized that redox compounds and reactive oxygen species play a decisive role in retrograde signaling.

CRITICAL ISSUES

The diversity of processes controlled or modulated by the retrograde network covers all molecular levels, including RNA fate and translation, and also includes subcellular heterogeneity, indirect gating of other organelles' metabolism, and specific signaling routes and pathways, previously not considered. All these processes must be integrated for optimal adjustment of the chloroplast processes. Thus, evidence is presented suggesting that retrograde signaling affects translation, stress granule, and processing body (P-body) dynamics.

FUTURE DIRECTIONS

Redundancy of signal transduction elements, parallelisms of pathways, and conditionally alternative mechanisms generate a robust network and system that only tentatively can be assessed by use of single-site mutants.

摘要

意义

光合作用发生在真核生物的叶绿体中,叶绿体占据了光合作用细胞的很大一部分。叶绿体的功能和完整性依赖于所有遗传区室之间的密集物质和信号交换,并确保有效的光合作用和高适应性。

最新进展

在过去的二十年中,关于质体前向信号作用于叶绿体以及叶绿体通过逆行信号反馈到质体外空间来控制质体性能的相互控制的概念已经得到了深刻的修正和扩展。很明显,从叶绿体中释放出了一组复杂的多种信号,超过了历史上提出的少数信息信号。因此,人们也认识到,氧化还原化合物和活性氧在逆行信号中起着决定性的作用。

关键问题

逆行网络控制或调节的过程的多样性涵盖了所有的分子水平,包括 RNA 的命运和翻译,还包括亚细胞异质性、其他细胞器代谢的间接门控,以及以前不被认为是特定的信号转导途径和途径。所有这些过程都必须整合起来,以实现对叶绿体过程的最佳调整。因此,有证据表明逆行信号会影响翻译、应激颗粒和加工体(P 体)的动态。

未来方向

信号转导元件的冗余、途径的平行性和条件性替代机制产生了一个强大的网络和系统,仅使用单点突变体进行评估是试探性的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验