Suppr超能文献

米替福新引起的利什曼原虫代谢组学紊乱揭示了神经酰胺和固醇代谢之间的复杂相互作用

Complex Interplay between Sphingolipid and Sterol Metabolism Revealed by Perturbations to the Leishmania Metabolome Caused by Miltefosine.

机构信息

Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, Madrid, Spain.

GSK I+D Diseases of the Developing World (DDW), Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain.

出版信息

Antimicrob Agents Chemother. 2018 Apr 26;62(5). doi: 10.1128/AAC.02095-17. Print 2018 May.

Abstract

With the World Health Organization reporting over 30,000 deaths and 200,000 to 400,000 new cases annually, visceral leishmaniasis is a serious disease affecting some of the world's poorest people. As drug resistance continues to rise, there is a huge unmet need to improve treatment. Miltefosine remains one of the main treatments for leishmaniasis, yet its mode of action (MoA) is still unknown. Understanding the MoA of this drug and parasite response to treatment could help pave the way for new and more successful treatments for leishmaniasis. A novel method has been devised to study the metabolome and lipidome of axenic amastigotes treated with miltefosine. Miltefosine caused a dramatic decrease in many membrane phospholipids (PLs), in addition to amino acid pools, while sphingolipids (SLs) and sterols increased. promastigotes devoid of SL biosynthesis through loss of the serine palmitoyl transferase gene (ΔLCB2) were 3-fold less sensitive to miltefosine than wild-type (WT) parasites. Changes in the metabolome and lipidome of miltefosine-treated mirrored those of A lack of SLs in the ΔLCB2 mutant was matched by substantial alterations in sterol content. Together, these data indicate that SLs and ergosterol are important for miltefosine sensitivity and, perhaps, MoA.

摘要

世界卫生组织报告称,每年有超过 3 万人死亡,20 万至 40 万人新感染内脏利什曼病,这是一种严重影响世界上一些最贫困人口的疾病。随着耐药性的不断上升,迫切需要改善治疗方法。米替福新仍然是利什曼病的主要治疗方法之一,但它的作用机制(MoA)仍不清楚。了解这种药物的 MoA 和寄生虫对治疗的反应,可能有助于为利什曼病开辟新的、更成功的治疗方法。已经设计出一种新方法来研究米替福新处理的无菌无鞭毛体的代谢组和脂质组。米替福新除了氨基酸池外,还导致许多膜磷脂(PLs)急剧减少,而鞘脂(SLs)和甾醇增加。通过丧失丝氨酸棕榈酰转移酶基因(ΔLCB2)而缺乏 SL 生物合成的前鞭毛体对米替福新的敏感性比野生型(WT)寄生虫低 3 倍。米替福新处理后的代谢组和脂质组的变化与缺乏 SLs 的变化相吻合,ΔLCB2 突变体中的甾醇含量也发生了实质性改变。这些数据表明,SLs 和麦角固醇对于米替福新的敏感性和作用机制可能很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78e5/5923112/88d930c60e51/zac0051870950001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验