Suppr超能文献

投掷动作中的低维运动控制表征

Low-Dimensional Motor Control Representations in Throwing Motions.

作者信息

Cruz Ruiz Ana Lucia, Pontonnier Charles, Dumont Georges

机构信息

INRIA/IRISA/M2S MimeTIC, Rennes, France.

Ecole Normale Supérieure de Rennes, Univ Rennes, Rennes, France.

出版信息

Appl Bionics Biomech. 2017;2017:3050917. doi: 10.1155/2017/3050917. Epub 2017 Dec 31.

Abstract

In this study, we identified a low-dimensional representation of control mechanisms in throwing motions from a variety of subjects and target distances. The control representation was identified at the kinematic level in task and joint spaces, respectively, and at the muscle activation level using the theory of muscle synergies. Representative features of throwing motions in all of these spaces were chosen to be investigated. Features were extracted using factorization and clustering techniques from the muscle data of unexperienced subjects (with different morphologies and physical conditions) during a series of throwing tasks. Two synergy extraction methods were tested to assess their consistency. For the task features, the degrees of freedom (DoF), and the muscles under study, the results can be summarized as (1) a control representation across subjects consisting of only two synergies at the activation level and of representative features in the task and joint spaces, (2) a reduction of control redundancy (since the number of synergies are less than the number of actions to be controlled), (3) links between the synergies triggering intensity and the throwing distance, and finally (4) consistency of the extraction methods. Such results are useful to better represent mechanisms hidden behind such dynamical motions and could offer a promising control representation for synthesizing motions with muscle-driven characters.

摘要

在本研究中,我们从不同受试者和目标距离的投掷动作中识别出了控制机制的低维表示。分别在任务空间和关节空间的运动学层面以及使用肌肉协同理论在肌肉激活层面识别出了控制表示。选择对所有这些空间中投掷动作的代表性特征进行研究。使用分解和聚类技术从未经训练的受试者(具有不同形态和身体状况)在一系列投掷任务中的肌肉数据中提取特征。测试了两种协同提取方法以评估其一致性。对于任务特征、自由度(DoF)以及所研究的肌肉,结果可总结为:(1)在激活层面仅由两种协同作用以及任务和关节空间中的代表性特征组成的跨受试者控制表示;(2)控制冗余的减少(因为协同作用的数量少于要控制的动作数量);(3)协同作用触发强度与投掷距离之间的联系;最后(4)提取方法的一致性。这些结果有助于更好地表示此类动态动作背后隐藏的机制,并可为合成具有肌肉驱动特征的动作提供有前景的控制表示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验