Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université de Bourgogne Franche Comté , 9 Avenue Alain Savary , BP 47870, F-21078 Dijon Cedex , France.
Nano Lett. 2018 Mar 14;18(3):1651-1659. doi: 10.1021/acs.nanolett.7b04526. Epub 2018 Mar 1.
Atomic-defect engineering in thin membranes provides opportunities for ionic and molecular filtration and analysis. While molecular-dynamics (MD) calculations have been used to model conductance through atomic vacancies, corresponding experiments are lacking. We create sub-nanometer vacancies in suspended single-layer molybdenum disulfide (MoS) via Ga ion irradiation, producing membranes containing ∼300 to 1200 pores with average and maximum diameters of ∼0.5 and ∼1 nm, respectively. Vacancies exhibit missing Mo and S atoms, as shown by aberration-corrected scanning transmission electron microscopy (AC-STEM). The longitudinal acoustic band and defect-related photoluminescence were observed in Raman and photoluminescence spectroscopy, respectively. As the irradiation dose is increased, the median vacancy area remains roughly constant, while the number of vacancies (pores) increases. Ionic current versus voltage is nonlinear and conductance is comparable to that of ∼1 nm diameter single MoS pores, proving that the smaller pores in the distribution display negligible conductance. Consistently, MD simulations show that pores with diameters <0.6 nm are almost impermeable to ionic flow. Atomic pore structure and geometry, studied by AC-STEM, are critical in the sub-nanometer regime in which the pores are not circular and the diameter is not well-defined. This study lays the foundation for future experiments to probe transport in large distributions of angstrom-size pores.
在薄膜中的原子缺陷工程为离子和分子过滤和分析提供了机会。虽然分子动力学 (MD) 计算已被用于模拟通过原子空位的电导率,但相应的实验却缺乏。我们通过 Ga 离子辐照在悬浮的单层二硫化钼 (MoS) 中创建亚纳米级空位,产生了含有约 300 到 1200 个孔的膜,平均和最大直径分别约为 0.5 和 1nm。空位表现出缺失的 Mo 和 S 原子,这一点通过像差校正扫描透射电子显微镜 (AC-STEM) 得到了证明。在拉曼光谱和光致发光光谱中分别观察到纵向声子带和与缺陷相关的光致发光。随着辐照剂量的增加,空位的中位面积基本保持不变,而空位(孔)的数量增加。离子电流与电压的关系是非线性的,电导率与直径约为 1nm 的单个 MoS 孔相当,证明分布中较小的孔几乎没有电导。一致地,MD 模拟表明直径小于 0.6nm 的孔对离子流动几乎是不可渗透的。AC-STEM 研究的原子孔结构和几何形状对于亚纳米尺度至关重要,在该尺度下,孔不是圆形的,并且直径也不是明确的。这项研究为未来探测埃级大小孔的大分布中的输运奠定了基础。