Letué Frédérique, Martinez Marie-José, Samson Adeline, Vilain Anne, Vilain Coriandre
Université Grenoble Alpes, CNRS, Grenoble INP, Laboratoire Jean Kuntzmann, France.
Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, France.
J Speech Lang Hear Res. 2018 Mar 15;61(3):561-582. doi: 10.1044/2017_JSLHR-S-17-0135.
Repeated duration data are frequently used in behavioral studies. Classical linear or log-linear mixed models are often inadequate to analyze such data, because they usually consist of nonnegative and skew-distributed variables. Therefore, we recommend use of a statistical methodology specific to duration data.
We propose a methodology based on Cox mixed models and written under the R language. This semiparametric model is indeed flexible enough to fit duration data. To compare log-linear and Cox mixed models in terms of goodness-of-fit on real data sets, we also provide a procedure based on simulations and quantile-quantile plots.
We present two examples from a data set of speech and gesture interactions, which illustrate the limitations of linear and log-linear mixed models, as compared to Cox models. The linear models are not validated on our data, whereas Cox models are. Moreover, in the second example, the Cox model exhibits a significant effect that the linear model does not.
We provide methods to select the best-fitting models for repeated duration data and to compare statistical methodologies. In this study, we show that Cox models are best suited to the analysis of our data set.
重复持续时间数据常用于行为研究。经典的线性或对数线性混合模型通常不足以分析此类数据,因为它们通常由非负且呈偏态分布的变量组成。因此,我们建议使用一种专门针对持续时间数据的统计方法。
我们提出一种基于Cox混合模型并使用R语言编写的方法。这种半参数模型确实足够灵活以拟合持续时间数据。为了在实际数据集的拟合优度方面比较对数线性和Cox混合模型,我们还提供了一种基于模拟和分位数-分位数图的程序。
我们展示了语音和手势交互数据集中的两个示例,与Cox模型相比,这些示例说明了线性和对数线性混合模型的局限性。线性模型在我们的数据上未得到验证,而Cox模型得到了验证。此外,在第二个示例中,Cox模型显示出线性模型未显示的显著效应。
我们提供了为重复持续时间数据选择最佳拟合模型并比较统计方法的方法。在本研究中,我们表明Cox模型最适合分析我们的数据集。