Hwang Doh-Gyu, Bartlett Michael D
Department of Materials Science and Engineering, Soft Materials and Structures Lab, Iowa State University of Science and Technology, 528 Bissell Rd, Ames, IA, 50011, USA.
Sci Rep. 2018 Feb 21;8(1):3378. doi: 10.1038/s41598-018-21479-7.
Inspired by the art of paper cutting, kirigami provides intriguing tools to create materials with unconventional mechanical and morphological responses. This behavior is appealing in multiple applications such as stretchable electronics and soft robotics and presents a tractable platform to study structure-property relationships in material systems. However, mechanical response is typically controlled through a single or fractal cut type patterned across an entire kirigami sheet, limiting deformation modes and tunability. Here we show how hybrid patterns of major and minor cuts creates new opportunities to introduce boundary conditions and non-prismatic beams to enable highly tunable mechanical responses. This hybrid approach reduces stiffness by a factor of ~30 while increasing ultimate strain by a factor of 2 (up to 750% strain) relative to single incision patterns. We present analytical models and generate general design criteria that is in excellent agreement with experimental data from nanoscopic to macroscopic systems. These hybrid kirigami materials create new opportunities for multifunctional materials and structures, which we demonstrate with stretchable kirigami conductors with nearly constant electrical resistance up to >400% strain and magnetoactive actuators with extremely rapid response (>10,000% strain s) and high, repeatable elongation (>300% strain).
受剪纸艺术的启发,kirigami提供了有趣的工具来制造具有非常规机械和形态响应的材料。这种特性在诸如可拉伸电子学和软体机器人等多种应用中具有吸引力,并为研究材料系统中的结构-性能关系提供了一个易于处理的平台。然而,机械响应通常是通过在整个kirigami薄片上图案化的单一或分形切割类型来控制的,这限制了变形模式和可调性。在这里,我们展示了主切割和次切割的混合图案如何创造新的机会来引入边界条件和非棱柱形梁,从而实现高度可调的机械响应。相对于单一切口图案,这种混合方法将刚度降低了约30倍,同时将极限应变提高了2倍(高达750%应变)。我们提出了分析模型并生成了通用设计标准,该标准与从纳米级到宏观系统的实验数据高度吻合。这些混合kirigami材料为多功能材料和结构创造了新的机会,我们通过在高达>400%应变时具有近乎恒定电阻的可拉伸kirigami导体以及具有极快速响应(>10,000%应变/秒)和高可重复伸长率(>300%应变)的磁活性致动器来证明这一点。