Suppr超能文献

糖尿病视网膜病变中病变分布的主观评估与精确定量评估的比较

Comparison of Subjective Assessment and Precise Quantitative Assessment of Lesion Distribution in Diabetic Retinopathy.

作者信息

Sears Connie Martin, Nittala Muneeswar G, Jayadev Chaitra, Verhoek Michael, Fleming Alan, van Hemert Jano, Tsui Irena, Sadda SriniVas R

机构信息

Harvard Medical School, Boston, Massachusetts.

Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, California.

出版信息

JAMA Ophthalmol. 2018 Apr 1;136(4):365-371. doi: 10.1001/jamaophthalmol.2018.0070.

Abstract

IMPORTANCE

Predominantly peripheral disease in eyes with nonproliferative diabetic retinopathy (DR) is suggested as a potential strong risk factor for progression to proliferative disease. However, the reliability and optimal method for the assessment of lesion distribution are still uncertain.

OBJECTIVE

To compare agreement between subjective assessment and precise quantification of lesion burden in ultrawidefield (UWF) images of eyes with DR.

DESIGN, SETTING, AND PARTICIPANTS: This multisite cross-sectional study examines UWF pseudocolor images acquired from DR screening clinic patients from December 20, 2014, through August 1, 2014. Of 104 cases, 161 eyes with DR were included. Data analysis was conducted from June 1, 2016, through December 1, 2016 at the Doheny Image Reading Center.

MAIN OUTCOMES AND MEASURES

Distribution of DR lesions in eyes was assessed subjectively and quantitatively, and eyes were classified as having predominantly central lesions (PCLs) or predominantly peripheral lesions (PPLs). The frequency and surface area (SA) of each lesion type were quantified. Intergrader and subjective vs quantitative classification were compared for level of agreement. Several methods of determining PPL distribution were also compared.

RESULTS

On subjective frequency-based evaluation by graders, 133 eyes were classified as having PCL, and 28 eyes as having PPL. On exact quantification of lesion SA, 121 eyes were classified as PCL, and 40 eyes as having PPL. On SA-based quantification, 134 eyes were classified as having PCL, and 27 eyes as having PPL. There was a significant difference between qualitative and quantitative classification of DR lesion distribution for both frequency-based (mean difference [SD]: PCL, 6 [2]; PPL, 13 [6]; P < .001) and SA-based (mean difference [SD]: PCL, 6 [1]; PPL, 20 [7]; P < .001) methods. Both intergrader reproducibility and subjective vs quantitative agreement were higher with frequency-based classification.

CONCLUSIONS AND RELEVANCE

Subjective assessment of PPL DR lesions on UWF images differed in some cases from precise quantitative assessments, particularly when considering the area of lesions. These findings highlight the benefit of objective quantitative approaches to DR assessment, which may facilitate the development of a more precise DR scoring system.

摘要

重要性

非增殖性糖尿病视网膜病变(DR)眼中主要为周边部病变被认为是进展为增殖性病变的潜在强风险因素。然而,病变分布评估的可靠性和最佳方法仍不确定。

目的

比较DR患者超广角(UWF)图像中病变负担主观评估与精确量化之间的一致性。

设计、设置和参与者:这项多中心横断面研究检查了2014年12月20日至2014年8月1日从DR筛查门诊患者获取的UWF伪彩色图像。在104例病例中,纳入了161只患有DR的眼睛。数据分析于2016年6月1日至2016年12月1日在多希尼图像阅读中心进行。

主要结局和测量指标

对眼中DR病变的分布进行主观和定量评估,将眼睛分类为主要为中心病变(PCL)或主要为周边病变(PPL)。对每种病变类型的频率和表面积(SA)进行量化。比较分级者之间以及主观与定量分类的一致性水平。还比较了几种确定PPL分布的方法。

结果

在分级者基于频率的主观评估中,133只眼睛被分类为PCL,28只眼睛被分类为PPL。在病变SA的精确量化中,121只眼睛被分类为PCL,40只眼睛被分类为PPL。在基于SA的量化中,134只眼睛被分类为PCL,27只眼睛被分类为PPL。基于频率(平均差异[标准差]:PCL,6[2];PPL,13[6];P<0.001)和基于SA(平均差异[标准差]:PCL,6[1];PPL,20[7];P<0.001)的方法在DR病变分布的定性和定量分类之间存在显著差异。基于频率的分类在分级者再现性以及主观与定量一致性方面均更高。

结论和相关性

UWF图像上PPL DR病变的主观评估在某些情况下与精确的定量评估不同,特别是在考虑病变面积时。这些发现突出了DR评估中客观定量方法的益处,这可能有助于开发更精确的DR评分系统。

相似文献

1
Comparison of Subjective Assessment and Precise Quantitative Assessment of Lesion Distribution in Diabetic Retinopathy.
JAMA Ophthalmol. 2018 Apr 1;136(4):365-371. doi: 10.1001/jamaophthalmol.2018.0070.
2
Distribution of peripheral lesions identified by mydriatic ultra-wide field fundus imaging in diabetic retinopathy.
Graefes Arch Clin Exp Ophthalmol. 2020 Apr;258(4):725-733. doi: 10.1007/s00417-020-04607-w. Epub 2020 Jan 27.
3
Diabetic Retinopathy Severity and Peripheral Lesions Are Associated with Nonperfusion on Ultrawide Field Angiography.
Ophthalmology. 2015 Dec;122(12):2465-72. doi: 10.1016/j.ophtha.2015.07.034. Epub 2015 Sep 6.
4
Relationship between macular perfusion and lesion distribution in diabetic retinopathy.
Eye (Lond). 2024 Oct;38(14):2724-2730. doi: 10.1038/s41433-024-03105-1. Epub 2024 May 9.
5
Ultra-Widefield Protocol Enhances Automated Classification of Diabetic Retinopathy Severity with OCT Angiography.
Ophthalmol Retina. 2020 Apr;4(4):415-424. doi: 10.1016/j.oret.2019.10.018. Epub 2019 Nov 9.
7
Ethnic Variation in Diabetic Retinopathy Lesion Distribution on Ultra-widefield Imaging.
Am J Ophthalmol. 2023 Mar;247:61-69. doi: 10.1016/j.ajo.2022.10.023. Epub 2022 Nov 9.
8
Retinal Vascular Caliber Association with Nonperfusion and Diabetic Retinopathy Severity Depends on Vascular Caliber Measurement Location.
Ophthalmol Retina. 2021 Jun;5(6):571-579. doi: 10.1016/j.oret.2020.09.003. Epub 2020 Sep 11.

引用本文的文献

1
Relationship between macular perfusion and lesion distribution in diabetic retinopathy.
Eye (Lond). 2024 Oct;38(14):2724-2730. doi: 10.1038/s41433-024-03105-1. Epub 2024 May 9.
2
Imaging Modalities for Assessing the Vascular Component of Diabetic Retinal Disease: Review and Consensus for an Updated Staging System.
Ophthalmol Sci. 2023 Dec 10;4(3):100449. doi: 10.1016/j.xops.2023.100449. eCollection 2024 May-Jun.
3
The Diabetic Retinopathy "Pandemic" and Evolving Global Strategies: The 2023 Friedenwald Lecture.
Invest Ophthalmol Vis Sci. 2023 Dec 1;64(15):47. doi: 10.1167/iovs.64.15.47.
5
The relationship of diabetic retinopathy severity scales with frequency and surface area of diabetic retinopathy lesions.
Graefes Arch Clin Exp Ophthalmol. 2023 Nov;261(11):3165-3176. doi: 10.1007/s00417-023-06145-7. Epub 2023 Jul 1.
7
Comparison of diabetic retinopathy severity grading on ETDRS 7-field versus ultrawide-field assessment.
Eye (Lond). 2023 Oct;37(14):2946-2949. doi: 10.1038/s41433-023-02445-8. Epub 2023 May 10.
9
Diabetic retinopathy: Looking forward to 2030.
Front Endocrinol (Lausanne). 2023 Jan 9;13:1077669. doi: 10.3389/fendo.2022.1077669. eCollection 2022.
10
Classification of diabetic retinopathy: Past, present and future.
Front Endocrinol (Lausanne). 2022 Dec 16;13:1079217. doi: 10.3389/fendo.2022.1079217. eCollection 2022.

本文引用的文献

1
Hemorrhage and/or Microaneurysm Severity and Count in Ultrawide Field Images and Early Treatment Diabetic Retinopathy Study Photography.
Ophthalmology. 2017 Jul;124(7):970-976. doi: 10.1016/j.ophtha.2017.02.012. Epub 2017 Mar 20.
2
Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders.
Ophthalmology. 2017 Mar;124(3):343-351. doi: 10.1016/j.ophtha.2016.11.014. Epub 2016 Dec 23.
5
Ultra-wide-field imaging in diabetic retinopathy; an overview.
J Curr Ophthalmol. 2016 Apr 30;28(2):57-60. doi: 10.1016/j.joco.2016.04.001. eCollection 2016 Jun.
6
Advances in retinal imaging for diabetic retinopathy and diabetic macular edema.
Indian J Ophthalmol. 2016 Jan;64(1):76-83. doi: 10.4103/0301-4738.178145.
7
Automated Diabetic Retinopathy Screening and Monitoring Using Retinal Fundus Image Analysis.
J Diabetes Sci Technol. 2016 Feb 16;10(2):254-61. doi: 10.1177/1932296816628546.
9
Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy.
Clin Ophthalmol. 2015 Mar 24;9:527-31. doi: 10.2147/OPTH.S79448. eCollection 2015.
10
Peripheral Lesions Identified on Ultrawide Field Imaging Predict Increased Risk of Diabetic Retinopathy Progression over 4 Years.
Ophthalmology. 2015 May;122(5):949-56. doi: 10.1016/j.ophtha.2015.01.008. Epub 2015 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验