Suppr超能文献

输入-输出映射强烈偏向于简单输出。

Input-output maps are strongly biased towards simple outputs.

作者信息

Dingle Kamaludin, Camargo Chico Q, Louis Ard A

机构信息

Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, UK.

Systems Biology DTC, University of Oxford, Oxford, OX1 3QU, UK.

出版信息

Nat Commun. 2018 Feb 22;9(1):761. doi: 10.1038/s41467-018-03101-6.

Abstract

Many systems in nature can be described using discrete input-output maps. Without knowing details about a map, there may seem to be no a priori reason to expect that a randomly chosen input would be more likely to generate one output over another. Here, by extending fundamental results from algorithmic information theory, we show instead that for many real-world maps, the a priori probability P(x) that randomly sampled inputs generate a particular output x decays exponentially with the approximate Kolmogorov complexity [Formula: see text] of that output. These input-output maps are biased towards simplicity. We derive an upper bound P(x) ≲ [Formula: see text], which is tight for most inputs. The constants a and b, as well as many properties of  P(x), can be predicted with minimal knowledge of the map. We explore this strong bias towards simple outputs in systems ranging from the folding of RNA secondary structures to systems of coupled ordinary differential equations to a stochastic financial trading model.

摘要

自然界中的许多系统都可以用离散的输入-输出映射来描述。在不了解映射细节的情况下,似乎没有先验理由期望随机选择的输入生成某一个输出的可能性会高于另一个输出。在此,通过扩展算法信息论的基本结果,我们反而表明,对于许多现实世界的映射,随机采样输入生成特定输出(x)的先验概率(P(x))会随着该输出的近似柯尔莫哥洛夫复杂度([公式:见正文])呈指数衰减。这些输入-输出映射倾向于简单性。我们推导出一个上界(P(x) \lesssim [公式:见正文]),对于大多数输入来说这个上界是严格的。常数(a)和(b)以及(P(x))的许多性质,只需对映射有最少的了解就能预测。我们在从RNA二级结构折叠到耦合常微分方程系统再到随机金融交易模型等各种系统中探索这种对简单输出的强烈偏向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验