Suppr超能文献

尖峰序列相似性空间(SSIMS)方法检测障碍物接近度和经验对蝙蝠生物声纳时间模式的影响。

Spike Train Similarity Space (SSIMS) Method Detects Effects of Obstacle Proximity and Experience on Temporal Patterning of Bat Biosonar.

作者信息

Accomando Alyssa W, Vargas-Irwin Carlos E, Simmons James A

机构信息

Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, United States.

National Marine Mammal Foundation, San Diego, CA, United States.

出版信息

Front Behav Neurosci. 2018 Feb 8;12:13. doi: 10.3389/fnbeh.2018.00013. eCollection 2018.

Abstract

Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, . In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape.

摘要

蝙蝠以复杂的时间模式发出生物声纳脉冲,这些模式会发生变化以适应动态环境。量化这些模式的努力包括对脉冲间隔、声纳声音组以及诸如持续时间或频率等单个信号参数的变化进行分析。在此,评估了生物声纳脉冲序列之间时间结构的相似性。最初设计用于神经活动模式分析的尖峰序列相似性空间(SSIMS)算法被应用于确定环境的哪些特征会影响飞行中的大棕蝠发出的脉冲的时间模式。在这些实验室实验中,蝙蝠沿着一条飞行走廊飞过一个障碍物阵列。走廊的宽度(100厘米、70厘米或40厘米)和形状(直的或弯曲的)各不相同。使用关系点过程框架,SSIMS能够区分在每个走廊宽度的飞行中记录的回声定位呼叫序列。SSIMS还能够区分在障碍物阵列的走廊形状与先前试验匹配(固定的或预期的)的飞行过程中记录的脉冲序列与在走廊形状随机化(可变的或意外的)的飞行过程中记录的脉冲序列之间的差异,但仅限于蝙蝠先前接受过训练的飞行路径形状。结果表明,经验会影响蝙蝠发出回声定位呼叫的时间模式。结果表明,障碍物与蝙蝠的接近程度比飞行路径形状对呼叫模式的影响更大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a03/5809465/598e55f9c448/fnbeh-12-00013-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验