Suppr超能文献

利用李普希茨低估法在构象特征空间中进行引导探索以实现从头算蛋白质结构预测。

Guiding exploration in conformational feature space with Lipschitz underestimation for ab-initio protein structure prediction.

作者信息

Hao Xiaohu, Zhang Guijun, Zhou Xiaogen

机构信息

College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China.

College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China.

出版信息

Comput Biol Chem. 2018 Apr;73:105-119. doi: 10.1016/j.compbiolchem.2018.02.003. Epub 2018 Feb 6.

Abstract

Computing conformations which are essential to associate structural and functional information with gene sequences, is challenging due to the high dimensionality and rugged energy surface of the protein conformational space. Consequently, the dimension of the protein conformational space should be reduced to a proper level, and an effective exploring algorithm should be proposed. In this paper, a plug-in method for guiding exploration in conformational feature space with Lipschitz underestimation (LUE) for ab-initio protein structure prediction is proposed. The conformational space is converted into ultrafast shape recognition (USR) feature space firstly. Based on the USR feature space, the conformational space can be further converted into Underestimation space according to Lipschitz estimation theory for guiding exploration. As a consequence of the use of underestimation model, the tight lower bound estimate information can be used for exploration guidance, the invalid sampling areas can be eliminated in advance, and the number of energy function evaluations can be reduced. The proposed method provides a novel technique to solve the exploring problem of protein conformational space. LUE is applied to differential evolution (DE) algorithm, and metropolis Monte Carlo(MMC) algorithm which is available in the Rosetta; When LUE is applied to DE and MMC, it will be screened by the underestimation method prior to energy calculation and selection. Further, LUE is compared with DE and MMC by testing on 15 small-to-medium structurally diverse proteins. Test results show that near-native protein structures with higher accuracy can be obtained more rapidly and efficiently with the use of LUE.

摘要

计算对于将结构和功能信息与基因序列相关联至关重要的构象具有挑战性,这是由于蛋白质构象空间的高维度和崎岖的能量表面所致。因此,应将蛋白质构象空间的维度降低到适当水平,并提出一种有效的探索算法。本文提出了一种用于从头算蛋白质结构预测的、利用利普希茨低估(LUE)在构象特征空间中引导探索的插件方法。首先将构象空间转换为超快形状识别(USR)特征空间。基于USR特征空间,根据利普希茨估计理论,可将构象空间进一步转换为低估空间以引导探索。由于使用了低估模型,紧密的下界估计信息可用于探索指导,可提前消除无效采样区域,并减少能量函数评估的次数。所提出的方法为解决蛋白质构象空间的探索问题提供了一种新技术。LUE应用于差分进化(DE)算法以及Rosetta中可用的 metropolis蒙特卡罗(MMC)算法;当LUE应用于DE和MMC时,它将在能量计算和选择之前通过低估方法进行筛选。此外,通过对15个结构多样的中小蛋白质进行测试,将LUE与DE和MMC进行了比较。测试结果表明,使用LUE可以更快速有效地获得具有更高准确性的近天然蛋白质结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验